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Abstract

Distinguishing subtle differences in attributes is valu-
able, yet learning to make visual comparisons remains non-
trivial. Not only is the number of possible comparisons
quadratic in the number of training images, but also access
to images adequately spanning the space of fine-grained
visual differences is limited. We propose to overcome the
sparsity of supervision problem via synthetically generated
images. Building on a state-of-the-art image generation en-
gine, we sample pairs of training images exhibiting slight
modifications of individual attributes. Augmenting real
training image pairs with these examples, we then train at-
tribute ranking models to predict the relative strength of
an attribute in novel pairs of real images. Our results on
datasets of faces and fashion images show the great promise
of bootstrapping imperfect image generators to counteract
sample sparsity for learning to rank.

1. Introduction
Fine-grained analysis of images often entails making vi-

sual comparisons. For example, given two products in a
fashion catalog, a shopper may judge which shoe appears
more pointy at the toe. Given two selfies, a teen may gauge
in which one he is smiling more. Given two photos of
houses for sale on a real estate website, a home buyer may
analyze which facade looks better maintained.

In these and many other such cases, we are interested
in inferring how a pair of images compares in terms of a
particular property, or “attribute”. That is, which is more
pointy, smiling, well-maintained, etc. Importantly, the dis-
tinctions of interest are often quite subtle. Subtle compar-
isons arise both in image pairs that are very similar in almost
every regard (e.g., two photos of the same individual wear-
ing the same clothing, yet smiling more in one photo than
the other), as well as image pairs that are holistically dif-
ferent yet exhibit only slight differences in the attribute in
question (e.g., two individuals different in appearance, and
one is smiling slightly more than the other).
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Figure 1: Our method “densifies” supervision for training ranking func-
tions to make visual comparisons, by generating ordered pairs of synthetic
images. Here, when learning the attribute smiling, real training images
need not be representative of the entire attribute space (e.g., Web pho-
tos may cluster around commonly photographed expressions, like toothy
smiles). Our idea “fills in” the sparsely sampled regions to enable fine-
grained supervision. Given a novel pair (top), the nearest synthetic pairs
(right) may present better training data than the nearest real pairs (left).

A growing body of work explores computational models
for visual comparisons [6, 19, 24, 28, 33, 36, 38, 39, 43,
46, 47, 48]. In particular, ranking models for “relative at-
tributes” [19, 24, 28, 33, 43, 47] use human-ordered pairs
of images to train a system to predict the relative ordering
in novel image pairs.

A major challenge in training a ranking model is the
sparsity of supervision. That sparsity stems from two fac-
tors: label availability and image availability. Because
training instances consist of pairs of images—together with
the ground truth human judgment about which exhibits the
property more or less—the space of all possible compar-
isons is quadratic in the number of potential training im-
ages. This quickly makes it intractable to label an image
collection exhaustively for its comparative properties. At
the same time, attribute comparisons entail a greater cog-
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nitive load than, for example, object category labeling. In-
deed, the largest existing relative attribute datasets sample
only less than 0.1% of all image pairs for ground truth la-
bels [47], and there is a major size gap between standard
datasets labeled for classification (now in the millions [7])
and those for comparisons (at best in the thousands [47]).
A popular shortcut is to propagate category-level compar-
isons down to image instances [2, 28]—e.g., deem all ocean
scenes as “more open” than all forest scenes—but this intro-
duces substantial label noise and in practice underperforms
training with instance-level comparisons [19].

More insidious than the annotation cost, however, is the
problem of even curating training images that sufficiently
illustrate fine-grained differences. Critically, sparse super-
vision arises not simply because 1) we lack resources to get
enough image pairs labeled, but also because 2) we lack a
direct way to curate photos demonstrating all sorts of subtle
attribute changes. For example, how might we gather unla-
beled image pairs depicting all subtle differences in “sporti-
ness” in clothing images or “surprisedness” in faces? As a
result, even today’s best datasets contain only partial repre-
sentations of an attribute. See Figure 1.

We propose to use synthetic image pairs to overcome the
sparsity of supervision problem when learning to compare
images. The main idea is to synthesize plausible photos
exhibiting variations along a given attribute from a genera-
tive model, thereby recovering samples in regions of the at-
tribute space that are underrepresented among the real train-
ing images. After (optionally) verifying the comparative la-
bels with human annotators, we train a discriminative rank-
ing model using the synthetic training pairs in conjunction
with real image pairs. The resulting model predicts attribute
comparisons between novel pairs of real images.

Our idea can be seen as semantic “jittering” of the data
to augment real image training sets with nearby varia-
tions. The systemic perturbation of images through label-
preserving transforms like mirroring/scaling is now com-
mon practice in training deep networks for classification [9,
37, 41]. Whereas such low-level image manipulations are
performed independent of the semantic content of the train-
ing instance, the variations introduced by our approach are
high-level changes that affect the very meaning of the im-
age, e.g., facial shape changes as the expression changes.
In other words, our jitter has a semantic basis rather than a
purely geometric/photometric basis. See Figure 2.

We demonstrate our approach in domains where subtle
visual comparisons are often relevant: faces and fashion.
To support our experiments, we crowdsource a lexicon of
fine-grained attributes that people naturally use to describe
subtle differences, and we gather new comparison annota-
tions. In both domains—and for two distinct popular rank-
ing models [38, 47]—we show that artificially “densifying”
comparative supervision improves attribute predictions.
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Figure 2: Whereas standard data augmentation with low-level “jitter” (left)
expands training data with image-space alterations (mirroring, scaling,
etc.), our semantic jitter (right) expands training data with high-level al-
terations, tweaking semantic properties in a controlled manner.

2. Related Work
Attribute Comparisons Since the introduction of rela-
tive attributes [28], the task of attribute comparisons has
gained attention for its variety of applications, such as on-
line shopping [19], biometrics [32], novel forms of low-
supervision learning [2, 36], and font selection [26].

The original approach [28] adopts a learning-to-rank
framework [15]. Pairwise supervision is used to train a lin-
ear ranking function for each attribute. More recently, non-
linear ranking functions [24], combining feature-specific
rankers [6], multi-task learning [5], fusing pointwise and
pairwise labels [42], and training local rankers on the
fly [47, 48] are all promising ways to improve accuracy.
Other work investigates features tailored for attribute com-
parisons, such as facial landmark detectors [33] and vi-
sual chains to discover relevant parts [43]. The success
of deep networks has motivated end-to-end frameworks for
learning features and attribute ranking functions simultane-
ously [38, 39, 46]. Unlike any of the above, the novelty of
our idea rests in the source data for training, not the learning
algorithm. We evaluate its benefits for two popular rank-
ing frameworks—RankSVM [2, 15, 19, 28, 47, 48] and a
Siamese deep convolutional neural network (CNN) [38].

Attributes and Image Synthesis Our approach relies on
a generative model for image synthesis that can progres-
sively modify a target attribute. Attribute-specific alter-
ations have been considered in several recent methods, pri-
marily for face images. Some target a specific domain
and attribute, such as methods to enhance the “memora-
bility” [17] or age [16] of facial photos, or to edit out-
door scenes with transient attributes like weather [22]. Al-
ternatively, the success of deep neural networks for image
generation (i.e., GAN [10] or VAE [11, 18, 20]) opens the
door to learning how to generate images conditioned on de-
sired properties [8, 23, 27, 44, 45]. For example, a con-
ditional multimodal auto-encoder can generate faces from
attribute descriptions [27], and focus on identity-preserving
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changes [23]. We employ the state-of-the-art model of [44]
due to its generality. Whereas the above methods aim to
produce an image for human inspection, we aim to generate
dense supervision for learning algorithms.

Training Recognition Models with Synthetic Images
The use of synthetic images as training data has been ex-
plored to a limited extent, primarily for human bodies.
Taking advantage of high quality graphics models for hu-
manoids, rendered images of people from various view-
points and body poses provide free data to train pose es-
timators [29, 34, 35] or person detectors [31]. For objects
beyond people, recent work considers how to exploit non-
photorealistic images generated from 3D CAD models to
augment training sets for object detection [30], or words
rendered in different fonts for text recognition [13].

While these methods share our concern about the spar-
sity of supervision, our focus on attributes and ranking is
unique. Furthermore, most methods assume a graphics en-
gine and 3D model to render new views with desired pa-
rameters (pose, viewpoint, etc.). In contrast, we investi-
gate images generated from a 2D image synthesis engine in
which the modes of variation are controlled by a learned
model. Being data-driven can offer greater flexibility, al-
lowing tasks beyond those requiring a 3D model, and vari-
ability beyond camera pose and lighting parameters.

3. Approach
Our idea is to “densify” supervision for learning to make

visual comparisons, by leveraging images sampled from an
attribute-conditioned generative model. First we overview
the visual comparison task (Sec. 3.1). Then, we describe the
generative model and how we elicit dense supervision pairs
from it (Sec. 3.2). Finally, we integrate synthetic and real
images to train rankers for attribute comparisons (Sec. 3.3).

3.1. Visual Comparison Predictor

Let xi ∈ RNx denote an image with Nx pixels and let
φ(xi) ∈ RD denote its D-dimensional descriptor (e.g.,
Gist, color, CNN feature, or simply raw pixels). Given
a target attribute A and two images xi and xj , the goal
of visual comparison is to determine which of the images
contains “more” of the specified attribute. The supervision
paradigm widely adopted in ranking models for attribute
comparisons [24, 28, 33, 38, 39, 43, 46, 47, 48] consists
of ordered pairs of images. Specifically, the learning algo-
rithm is provided with ordered pairs PA = {(xi,xj)} for
which human annotators perceive image i to have the at-
tribute A more than image j. The idea is to learn a ranking
function RA(φ(x)) that satisfies the specified orderings as
well as possible:

∀(i, j) ∈ PA : RA(φ(xi)) > RA(φ(xj)). (1)

Precisely what defines “as well as possible” depends on the
specifics of the model, such as a RankNet objective [4, 38]
or paired classification objective with wide margin regular-
ization [15, 28].

Given a novel image pair (xm,xn), the ranker com-
pares them to determine which exhibits the attribute more.
If RA(φ(xm)) > RA(φ(xn)), then image m exhibits at-
tribute A more than image n, and vice versa.

Our goal is to address the sparsity issue in PA through
the addition of synthetic image pairs, such that the training
pairs are more representative of subtle differences inA. Our
approach does not interfere with the formulation of the spe-
cific ranking model used. So, improvements in densifying
supervision are orthogonal to improvements in the relative
attribute prediction model. To demonstrate this versatility,
in experiments we explore two successful learning-to-rank
models from the attributes literature (see Sec. 3.3).

3.2. Synthesizing Dense Supervision

The key to improving coverage in the attribute
space is the ability to generate images exhibiting sub-
tle differences—with respect to the given attribute—while
keeping the others constant. In other words, we want to
walk semantically in the high-level attribute space.

3.2.1 Attribute-Conditioned Image Generator

We adopt an existing state-of-the-art image generation sys-
tem, Attribute2Image, recently introduced by Yan et al. [44,
45], which can generate images that exhibit a given set of
attributes and latent factors.

Suppose we have a lexicon of Na attributes,
{A1, . . . ,ANa

}. Let y ∈ RNa be a vector containing
the strength of each attribute, and let z ∈ RNz be the
latent variables. The Attribute2Image approach constructs
a generative model for pθ(x|y, z) that produces realistic
images x ∈ RNx conditioned on y and z. The authors
maximize the variational lower bound of the log-likelihood
log pθ(x|y) in order to obtain the model parameters θ.
The model is implemented with a Conditional Variational
Auto-Encoder (CVAE). The network architecture generates
the entangled hidden representation of the attributes and la-
tent factors with multilayer perceptrons, then generates the
image pixels with a coarse-to-fine convolutional decoder.
The authors apply their approach for attribute progression,
image completion, and image retrieval. See [44, 45] for
more details.

3.2.2 Generating Dense Synthetic Image Pairs

We propose to leverage the Attribute2Image [44] engine
to supply realistic synthetic training images that “fill in”
underrepresented regions of image space, which we show
helps train a model to infer attribute comparisons.
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Figure 3: Spectra of generated images given an identity and an attribute.
We form two types of image pairs: The two solid boxes represent an intra-
identity pair, whereas the two red boxes represent an inter-identity pair.

The next key step is to generate a series of synthetic iden-
tities, then sample images for those identities that are close
by in a desired semantic attribute space.1 The resulting im-
ages will comprise a set of synthetic image pairs SA. We
explore two cases for using the generated pairs: one where
their putative ordering is verified by human annotators, and
another where the ordering implied by the generation en-
gine is taken as their (noisy) label. Section 3.3 describes
how we use the hybrid real and synthetic image pairs to
train specific attribute predictors.

Each identity is defined by an entangled set of latent fac-
tors and attributes. Let p(y) denote a prior over the at-
tribute occurrences in the domain of interest. We model
this prior with a multivariate Gaussian whose mean and co-
variance are learned from the attribute strengths observed
in real training images: p(y) = N (µ,Σ). This distribution
captures the joint interactions between attributes, such that a
sample from the prior reflects the co-occurrence behavior of
different pairs of attributes (e.g., shoes that are very pointy
are often also uncomfortable, faces that have facial hair are
often masculine, etc.).2 The prior over latent factors p(z),
captures all non-attribute properties like pose, background,
and illumination. Following [45], we represent p(z) with
an isotropic multivariate Gaussian.

To sample an identity

Ij = (yj , zj) (2)

1Note that here the word identity means an instance for some domain,
not necessarily a human identity; in experiments we apply our idea both
for human faces as well as fashion images of shoes.

2The training image attribute strengths originate from the raw decision
outputs of a preliminary binary attribute classifier trained on disjoint data
labeled for the presence/absence of the attribute (see Sec. 5 and Supp).

we sample yj and zj from their respective priors. Then,
using an Attribute2Image model trained for the domain of
interest, we sample from pθ(x|yj , zj) to generate an image
x̂j ∈ RNx for this identity. Alternatively, we could sample
an identity from a single real image, after inferring its latent
variables through the generative model [46]. However, do-
ing so requires having access to attribute labels for that im-
age. More importantly, sampling novel identities from the
prior (vs. an individual image) supports our goal to densify
supervision, since we can draw nearby instances that need
not have been exactly observed in the real training images.
In experiments, we generate thousands of identities.

Next we modify the strength of a single attribute in y
while keeping all other variables constant. This yields two
“tweaked” identities I(−)j and I(+)

j that look much like Ij ,
only with a bit less or more of the attribute, respectively.
Specifically, let σA denote the standard deviation of at-
tribute scores observed in real training images for attribute
A. We revise the attribute vector for identity Ij by replacing
the dimension for attribute A according to

y
(−)
j (A) = yj(A)− 2σA and

y
(+)
j (A) = yj(A) + 2σA, (3)

and y
(−)
j (a) = y

(+)
j (a) = yj(a),∀a 6= A. Finally, we

sample from pθ(x|y(−)
j , zj) and pθ(x|y(+)

j , zj) to obtain

images x̂(−)
j and x̂

(+)
j . Recall that our identity sampling ac-

counts for inter-attribute co-occurrences. Slightly altering a
single attribute recovers plausible but yet-unseen instances.

Figure 3 shows examples of synthetic images generated
for a sampled identity, varying only in one attribute. The
generated images form a smooth progression in the attribute
space. This is exactly what allows us to curate fine-grained
pairs of images that are very similar in attribute strength.
Crucially, such pairs are rarely possible to curate systemat-
ically among real images. The exception is special “hands-
on” scenarios, e.g., for faces, asking subjects in a lab to
slowly exhibit different facial expressions, or systematically
varying lighting or head pose (cf. PIE, Yale face datasets).
The hands-on protocol is not only expensive, it is inapplica-
ble in most domains outside of faces and for rich attribute
vocabularies. For example, how would one physically mod-
ify the pointiness of a shoe’s toe, while leaving all other
properties the same? Furthermore, the generation process
allows us to collect in a controlled manner subtle visual
changes across identities as well.

Next we pair up the synthetic images to form the set
SA, which, once (optionally) verified and pruned by hu-
man annotators, will augment the real training image pairs
PA. In order to maximize our coverage of the attribute
space, we sample two types of synthetic image pairs:
intra-identity pairs, which are images sampled from the
same identity’s spectrum and inter-identity pairs, which

4



are images sampled from different spectrums (see Fig. 3).
Specifically, for every identity j, SA receives intra pairs
{(x̂(−)

j , x̂j), (x̂j , x̂
(+)
j )} and for every pair of identities

(j, k), SA receives inter pairs {(x̂j , x̂(+)
k ), (x̂

(−)
k , x̂j)}.

We expect many of the generated pairs to be valid, mean-
ing that both images are realistic and that the pair exhibits
a slight difference in the attribute of interest. However, this
need not always be true. In some cases the generator will
create images that do not appear to manipulate the attribute
of interest, or where the pair is close enough in the attribute
to be indistinguishable, or where the images simply do not
look realistic enough to tell. Our experiments indicate this
happens about 15% of the time.

To correct erroneous pairs, we collect order labels from
5 crowdworkers per pair. However, while human-verified
pairs are most trustworthy for a learning algorithm, we sus-
pect that even noisy (unverified) pairs could be beneficial
too, provided the learning algorithm 1) has high enough ca-
pacity to accept a lot of them and/or 2) is label-noise resis-
tant. Unverified pairs are attractive because they are free to
generate in mass quantities. We examine both cases below.

3.3. Learning to Rank with Hybrid Comparisons

In principle any learning algorithm for visual compar-
isons could exploit the newly generated synthetic image
pairs. We consider two common ones from the attribute lit-
erature: RankSVMs with local learning and a deep Siamese
RankNet with a spatial transformer network (STN).

RankSVM+Local Learning RankSVM is a learning-to-
rank solution that optimizes RA(φ(x)) to preserve order-
ings of training pairs while maximizing the rank margin,
subject to slack [15]. In the linear case,

R
(svm)
A (φ(x)) = wT

Aφ(x), (4)

where w is the ranking model parameters. The formulation
is kernelizable, which allows non-linear ranking functions.
It is widely used for attributes [2, 19, 28, 47, 48].

We employ RankSVM with a local learning model. In
local learning, one trains with only those labeled instances
nearest to the test input [1, 3]. Given a hybrid set of sparse
real pairs and dense synthetic pairs, {PA

⋃
SA}, we use a

local model to select the most relevant mix of real and syn-
thetic pairs (see Fig. 4). Just as bare bones nearest neigh-
bors relies on adequate density of labeled exemplars to suc-
ceed, in general local learning is expected to flourish when
the space of training examples is more densely populated.
Thus, local learning is congruent with our hypothesis that
data density is at least as important as data quantity for
learning subtle visual comparisons. See Figure 1.

Specifically, following [47], we train a local model for
each novel image pair (at test time) using only the most rel-
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Figure 4: Examples of nearest neighbor image pairs given novel test pairs
(left). Both real and synthetic image pairs appear in the top neighbors,
suggesting their combined importance in the local learning algorithm.

evant image pairs. Relevance is captured by the inter-pair
image distance: for a test pair (xm,xn), one gathers the
K nearest pairs according to the product of element-wise
distances between (xm,xn) and each training pair. Only
those K pairs are used to train a ranking function (Eqn(4))
to predict the order of (xm,xn). See [47] for details.

DeepCNN+Spatial Transformer Our choice for the sec-
ond ranker is motivated both by its leading empirical per-
formance [38] as well as its high capacity, which makes it
data hungry.

This deep learning to rank method combines a CNN op-
timized for a paired ranking loss [4] together with a spatial
transformer network (STN) [14]. In particular,

R
(cnn)
A (φ(x)) = RankNetA(STN(φ(x))), (5)

where RankNet denotes a Siamese network with duplicate
stacks. During training these stacks process ordered pairs,
learning filters that map the images to scalars that preserve
the desired orderings in PA. The STN is trained simultane-
ously to discover the localized patch per image that is most
useful for ranking the given attribute (e.g., it may focus on
the mouth for smiling). Given a single novel image, either
stack can be used to assign a ranking score. See [38] for de-
tails. As above, our approach trains this CNN with all pairs
in {PA

⋃
SA}.

Generator vs. Ranker A natural question to ask is why
not feed back the synthetic image pairs into the same gener-
ative model that produced them, to try and enhance its train-
ing? We avoid doing so for two important reasons. First,
this would lead to a circularity bias where the system would
essentially be trying to exploit new data that it has already
learned to capture well (and hence could generate already).
Second, the particular image generator we employ is not
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equipped to learn from relative supervision nor make rela-
tive comparisons on novel data. Rather, it learns from in-
dividual images with absolute attribute strengths. Thus, we
use the synthetic data to train a distinct model capable of
learning relative visual concepts.

Curating Images vs. Curating Supervision While tra-
ditional data collection methods lack a direct way to curate
image pairs covering the full space of attribute variations,
our approach addresses exactly this sparsity. It densifies
the attribute space via plausible synthetic images that ven-
ture into potentially undersampled regions of the attribute
spectra. Our approach does not expect to get “something
for nothing”. Indeed, the synthesized examples are still an-
notated by humans. The idea is to expose the learner to real-
istic images that are critical for fine-grained visual learning
yet difficult to attain in traditional data collection pipelines.

4. A Lexicon of Fine-Grained Attributes
While there are numerous large datasets for single image

tasks like object detection, datasets for visual comparison
with instance-level pairwise supervision are more modest.
In addition, the lexicon of attributes used in existing relative
attributes datasets is selected based on intuitions, i.e., words
that seem domain relevant [19] or words that seem to exhibit
the most subtle fine-grained differences [47].

Towards addressing both limitations, we construct a new
fine-grained relative attribute dataset. We 1) use crowd-
sourcing to mine for an attribute lexicon that is explicitly
fine-grained, and 2) collect a large number of pairwise or-
derings for each attribute in that lexicon. We focus on fash-
ion images of shoes from the UT-Zap50K dataset [47].

Given a pair of images, we ask Turkers to complete the
sentence, “Shoe A is a little more 〈insert word〉 than Shoe
B” using a single word. They are instructed to identify sub-
tle differences between the images and provide a short ra-
tionale. The goal is to find out how people differentiate fine-
grained differences between shoe images. Over 1,000 work-
ers participated in the study, yielding a total of 350+ distinct
word suggestions across 4,000 image pairs viewed. This
approach to lexicon generation takes inspiration from [25],
but fine-tuned towards eliciting “almost indistinguishable”
visual changes rather than arbitrary attribute differences.

After post-processing based on the rationales and merg-
ing of synonyms, we select the 10 most frequent words as
the new fine-grained relative attribute lexicon for shoes:
comfort, casual, simple, sporty, colorful, durable, support-
ive, bold, sleek, and open. See Supp File for more details.

Using this new lexicon, we collect pairwise supervision
for about 4,000 pairs for each of the 10 attributes, using im-
ages from UT-Zap50K [47]. This is a step towards denser
supervision on real images—more than three times the com-
parison labels provided in the original dataset. Still, as we

will see in results, the greater density offered by synthetic
training instances is needed for best results.

5. Experiments
We conduct fine-grained visual comparison experiments

to validate the benefit of our dense supervision idea, for both
rankers described in Section 3.3.

Datasets Our experiments rely on the following existing
and newly collected datasets. To our knowledge there exist
no other instance-labeled relative attribute datasets.

Zap50K+New Lexicon The UT-Zap50K dataset [47] con-
sists of 50,025 catalog shoe images from Zappos.com. It
contains 2,800 pairwise labels on average for each of 4 at-
tributes: open, pointy, sporty, and comfort. The labels are
divided into coarse (UT-Zap50K-1) and fine-grained pairs
(UT-Zap50K-2). We augment it with the crowd-mined lex-
icon (cf. Sec. 4) for 10 additional attributes.

Zap50K-Synth A new synthetic shoe dataset with pair-
wise labels on the new 10-attribute lexicon. We train the
generative model using a subset of UT-Zap50K and a su-
perset of the above attributes (see Supp File for details). We
generate 1,000 identities and each one is used to sample
both an intra- and inter-identity pair, yielding ∼2,000 pair
labels per attribute. The synthetic images are 64×64 pixels.

LFW-10 The LFW-10 dataset [33] consists of 2,000 face
images from Labeled Faces in the Wild (LFW) [12]. It con-
tains 10 attributes: bald, dark hair, eyes open, good looking,
masculine, mouth open, smile, visible teeth, visible fore-
head, and young. After pruning pairs with less than 80%
agreement from the workers, there are 600 pairwise labels
on average per attribute.

PFSmile Face images from the Public Figures dataset
(PubFigAttr) [21, 28]. 8 frontal images each of 8 random in-
dividuals are selected, with the frontal images showing dif-
ferent degrees of smilingness for the given individual (e.g.,
images of Zach Efron going from not smiling at all to fully
smiling). We use smiling because it is the only PubFig at-
tribute that manifests fine-grained changes on the same in-
dividual (e.g., it doesn’t display Zach both as bald and less
bald). This limitation of the data actually reinforces the dif-
ficulty of manually curating images with subtle differences
for learning. We collect labels on all possible pairwise com-
parisons among images of the same individual. After prun-
ing, there are 211 pairwise labels.

LFW-Synth A new synthetic face dataset with pairwise
labels on the attribute smiling. We train the generative
model on a subset of LFW images and the 73 attributes
from [21, 44]. We generate 2,000 identities and sample a
total of 4,000 intra pairs and 1,000 inter pairs. The syn-
thetic images are 35 × 35 pixels, after zooming to a tight
bounding box around the face region.
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Comfort Casual Simple Sporty Colorful Durable Supportive Bold Sleek Open
Classifier 72.69 79.32 82.20 81.21 17.87 80.05 78.62 18.35 17.60 27.15

R
an

kS
V

M

Real 84.03 86.11 86.89 87.27 83.84 85.15 87.75 83.71 86.06 84.41
Real+ 82.41 87.04 86.18 87.58 84.79 84.69 87.75 81.44 88.02 81.18
Jitter 84.49 87.35 88.52 83.36 85.36 86.77 86.86 85.36 86.31 82.53
DSynth 85.02 88.89 85.56 89.95 87.43 84.32 87.29 87.62 86.40 81.05
DSynth-Auto 84.72 87.35 87.59 86.06 85.74 86.78 83.74 85.36 86.55 83.87

D
ee

pS
T

N

Real 84.95 87.04 89.46 88.79 94.30 83.29 85.75 87.42 85.82 84.68
Real+ 81.25 87.65 86.18 87.88 90.68 83.29 85.52 87.84 86.31 82.53
Jitter 81.94 87.96 86.89 87.58 93.73 85.38 85.75 89.07 83.86 80.65
DSynth 82.18 89.81 89.70 90.30 93.73 87.24 85.52 89.28 86.55 82.26
DSynth-Auto 87.27 88.89 88.76 90.00 95.44 88.86 87.75 87.63 86.80 86.29

Table 1: Results on Zap50K for the new lexicon of 10 attributes most frequently used to distinguish fine-grained differences between shoe images. We
experiment with two kinds of base training models: (top) local learning (RankSVM) [47] and (bottom) localized ranking (DeepSTN) [38].

Implementation Details For synthesis, we use the code
shared by the authors for the Attribute2Image system [44],
with all default parameters. Since we inherit the genera-
tor’s 64 × 64 output image resolution, for apples-to-apples
comparison, we downsize real images to match the resolu-
tion of the synthetic ones. Early experiments showed that a
mix of inter and intra-identity pairs was most effective, so
we use a 50-50 mix in all experiments. For RankSVM, we
use Gist [40] and 30-bin Lab color histograms as the image
features φ, following [28, 47]3, and validate K per method
on held-out data. For DeepSTN, we use training parame-
ters provided in [38] per dataset. The images used to train
the generative model, to train the ranking functions, and to
evaluate (test set) are kept strictly disjoint.

Baselines We compare the following methods:

• Real: Training pool consists of only real image pairs,
labeled by human annotators.

• Jitter: Uses the same real training pairs, but augments
them with pairs using traditional low-level jitter. Each
real image is jittered following parameters in [9] in a
combination of five changes: translation, scaling, ro-
tation, contrast, and color. A jittered pair inherits the
corresponding real pair’s label.

• DSynth: Training pool consists of only half of Real’s
pairs, with the other half replaced with our dense syn-
thetic image pairs, manually verified by annotators.

• DSynth-Auto: Training pool consists of all real image
pairs and our automatically supervised synthetic image
pairs, where noisy pairwise supervision is obtained (for
free) based on the absolute attribute strength used to
generate the respective images.

• Classifier: Predicts the attribute scores directly using
the posterior RA(φ(x)) = p(A|x) obtained from a
binary classifier trained with the same images that train
the image generator.

3Pretrained CNN features with RankSVM proved inferior.

• Real+: Augments Real with additional pseudo real im-
age pairs. The image generator [44] requires attribute
strength values on its training images, which are ob-
tained from outputs of an attribute classifier [21]. The
Real+ baseline trains using the same real pairs used
above, plus pseudo pairs of the equal size boostrapped
from those strength values on individual images.

We stress that our DSynth methods use the same amount of
human-annotated pairs as the Real and Jitter baselines.

5.1. Fashion Images of Shoes

Fashion product images offer a great testbed for fine-
grained comparisons. This experiment uses UT-Zap50K for
real training and testing pairs, and Zap50K-Synth for syn-
thetic training pairs. There are 10 attributes total. Since
the real train and test pairs come from the same dataset,
this presents a challenge for our approach—can synthetic
images, despite their inherent domain shift, still help the al-
gorithm learn a more reliable model?

Table 1 shows the results. The Classifier baseline un-
derperforms both rankers, confirming that the generator’s
initial representation of attribute strengths is insufficient.

Under the local RankSVM model, our approach outper-
forms the baselines in most attributes. Augmenting with
traditional low-level jitter also provides a slight boost in per-
formance, but not as much as ours. Looking at the compo-
sition of the local neighbors, we see that about 85% of the
selected local neighbors are our synthetic pairs (15% real)
while only 55% are jittered pairs (45% real). Thus, our syn-
thetic pairs do indeed heavily influence the learning of the
ranking models. Figure 4 shows examples of nearest neigh-
bor image pairs retrieved for sample test pairs. The exam-
ples illustrate how 1) the synthetic images densify the super-
vision, providing perceptually closer instances for training,
and 2) both real and synthetic image pairs play an important
role in training. We conclude that semantic jitter densifies
the space more effectively than low-level jitter.

Under the DeepSTN model (Table 1), our approach
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Open Sporty Comfort
Z

ap
50

K
-1 RelAttr [28] 88.33 89.33 91.33

FG-LP [47] 90.67 91.33 93.67
DeepSTN [38] 93.00 93.67 94.33
DSynth-Auto (Ours) 95.00 96.33 95.00

Z
ap

50
K

-2 RelAttr [28] 60.36 65.65 62.82
FG-LP [47] 69.36 66.39 63.84
DeepSTN [38] 70.73 67.49 66.09
DSynth-Auto (Ours) 72.18 68.70 67.72

Table 2: Results on UT-Zap50K-1 (coarse pairs) and UT-Zap50K-2 (fine-
grained pairs) vs. prior methods. All methods are trained and tested on
64× 64 images for an apples-to-apples comparison. All experimental
setup details are kept the same except for the addition of dense synthetic
pairs to the training pool for our approach.

outperforms the baselines in all attributes. Interestingly,
DSynth-Auto often outperforms DSynth here. We be-
lieve the higher capacity of the DeepSTN model can bet-
ter leverage the noisy auto-labeled pairs, compared to the
RankSVM model, which more often benefits from the
human-verification step. As one would expect, we notice
that DSynth-Auto does best for attributes where the inferred
labels agree most often with human provided labels. This is
an exciting outcome; our model has potential to generate
useful training data with “free” supervision. Low-level jit-
ter on the other hand has limited benefit, even detrimental
in some cases. Furthermore, the number of synthetic pairs
used correlates positively with performance, e.g., halving
the number of synthetic pairs to DSynth-Auto decreases ac-
curacy by 4 points on average.

For both ranking models, our approach outperforms the
Real baseline. This shows that simply collecting more an-
notations on real images is not enough: “Real” uses twice
as many real training pairs as our method, yet is consis-
tently less accurate. The finding holds even when we aug-
ment Real with [44]’s instance labels (Real+). Both base-
lines suffer from the sparsity issue, lacking the fine-grained
comparisons needed to train a stronger model.

Overall, our gains are significant, considering they are
achieved without any changes to the underlying ranking
models, the features, or the experimental setup.

Comparison to Prior Relative Attribute Results Next,
we take the best model from above (DeepSTN+DSynth-
Auto), and compare its results to several existing methods.
While authors have reported accuracies on this dataset, as-
is comparisons to our model would not be apples-to-apples:
due to the current limits of image synthesis, we work with
low resolution data (64 × 64) whereas prior work uses full
sized 150 × 100 [38, 39, 43]. Therefore, we use the au-
thors’ code to re-train existing methods from scratch with
the same smaller real images we use. In particular, we train
1) Relative attributes (RelAttr) [28]; 2) Fine-grained local
learning (FG-LP) [47]; and 3) End-to-end localization and

Smiling Real Real+ Jitter DSynth DSynth-Auto

Classifier – – – – – – 62.35 – – – – – –
RankSVM 69.29 68.95 74.29 73.88 75.00
DeepSTN 81.52 80.84 80.09 85.78 84.36

Table 3: Results on PFSmile dataset.

ranking (DeepSTN). We compare them on UT-Zap50K, a
primary benchmark for relative attributes [47].4 We do not
use the newly collected real labeled data for our method, to
avoid an unfair advantage.

Tables 2 shows the results. Our approach does best, im-
proving the state-of-the-art DeepSTN even for the difficult
fine-grained pairs on UT-Zap50K-2 where attention to sub-
tle details is necessary.

5.2. Human Faces

Next we consider the face domain. This experiment uses
LFW-10 for real training pairs, LFW-Synth for synthetic
training pairs, and PFSmile for real testing pairs. Since PF-
Smile only contains image pairs of the same individual, the
comparison task is fine-grained by design. Here we have an
additional domain shift, as the real train and test images are
from different datasets with somewhat different properties.

Table 3 shows the results. Consistent with above, our ap-
proach outperforms all baselines. Even without human ver-
ification of our synthetic pairs (DSynth-Auto), our method
secures a decent gain over the Real baseline: 75.00% vs.
69.29% and 84.36% vs. 81.52%. That amounts to a relative
gain of 8% and 3.5%, respectively. The Classifier poste-
rior baseline underperforms the rankers. Our semantic jit-
ter strongly outperforms traditional low-level jitter for the
DeepSTN rankers, with a 6 point accuracy boost.

6. Conclusion
Supervision sparsity hurts fine-grained attributes—

closely related image pairs are exactly the ones the system
must learn from. We presented a new approach to data aug-
mentation, in which real training data mixes with realistic
synthetic examples that vary slightly in their attributes. The
generated training images more densely sample the space
of images to illustrate fine-grained differences. We stress
that sample density is distinct from sample quantity. As our
experiments demonstrate, simply gathering more real im-
ages does not offer the same fine-grained density, due to
the curation problem. Future work could explore ways to
limit annotation effort to only the most questionable syn-
thetic pairs.
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