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Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images

Fine-Grained Visual Comparisons Densifying Supervision Experimental Results

Our Idea

Hybrid Real + Synthetic Training

Existing Approaches

o focus on improving the ranking algorithms
[Yang et al. ‘16, Souri et al. ‘16, Singh & Lee ‘16, Yu & Grauman ‘14, Li et al. ‘12, ...]

o existing datasets contain insufficient representation of fine-
grained differences using real images
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Densify the attribute space using synthetic image pairs to 

improve supervision for fine-grained learning.

Generate synthetic images exhibiting subtle differences

o “fill in” the sparsely sampled regions to enhance fine-grained supervision

o pre-trained Attribute2Image [Yan et al. ‘16] image generation engine

o attribute-conditioned generation of synthetic identities Ι𝑗 = (𝑦𝑗 , 𝑧𝑗)

- -

sporty

opencomfort

+

Semantic Jitter

+

+

-

Low-Level Jitter

Open

Smiling

Semantic “jittering” to augment real 

training images

o high-level changes that modify 

underlying meaning

attributes

latent factors

Create synthetic complement for real image datasets in each domain (shoes & faces)

o generate synthetic identities

o sample both intra- and inter-pairs

from resulting spectrum

o collect pairwise labels from human 

annotators as well
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RankSVM
[Yu & Grauman ‘14]

DeepSTN
[Singh & Lee ‘16]

Ranker Independent!

vs.

Expand upon our UT-Zap50K dataset [Yu & Grauman ‘14]

o crowdsource a new fine-grained attribute lexicon 

based on visual subtleties

o collect large new set of pairwise labels, more than 

3 times that of the original (largest to date)
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Real Real+ Jitter DSynth DSynth-Auto

Zap50K-1
(coarse)

Open Sporty Comfort

[Parikh & Grauman ‘11] 88.33 89.33 91.33

[Yu & Grauman ‘14] 90.67 91.33 93.67

[Singh & Lee ‘16] 93.00 93.67 94.33

DSynth-Auto (Ours) 95.00 96.33 95.00

Zap50K-2
(fine-grained)

Open Sporty Comfort

[Parikh & Grauman ‘11] 60.36 65.65 62.82

[Yu & Grauman ‘14] 69.36 66.39 63.84

[Singh & Lee ‘16] 70.73 67.49 66.09

DSynth-Auto (Ours) 72.18 68.70 67.72

Conclusion

Observation: The synthetic 

image pairs successfully 

densify the supervision. 

Given a novel pair, the 

nearest neighbors consist of 

both real and synthetic pairs, 

suggesting their combined 

importance. 
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o semantic data augmentation approach to tackle the sparsity of supervision

o data density ≠ data quantity

o positive evaluation over two domains using two state-of-the-art ranking models 

demonstrates generalizability, even when using auto labels

Observation: Even with 2x the real data, the state-of-the-art models fail to 

predict fine-grained differences as well as when our synthetic data are added, 

demonstrating the importance of having a dense set of training data. (Note: All 

methods use the same amount of human supervision.)

* all methods are trained and tested on 64 x 64 images for fair comparison
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* real face images from LFW-10 [Sandeep et al. ‘14] * real shoe images from UT-Zap50K [Yu & Grauman ‘14]

Problem: Sparsity of Supervision

1) pairwise supervision  quadratic # of potential pairs (label 

availability)

2) lack a direct way to curate the “right” data for optimal 
coverage of the attribute space (image availability)


