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Abstract

Beyond recognizing objects, a computer vision system ought to be able to com-

pare them. A promising way to represent visual comparisons is through attributes, which

are mid-level properties that appear across category boundaries. The ability to compare

attributes opens up new opportunities in areas such as online shopping, object recogni-

tion, and human biometrics, where a relative decision is often more informative than its

binary counterpart. For example, given two human faces, a decision that one face is smil-

ing more than the other may be more informative—and even more appropriate—than

a hard yes or no decision.

In this thesis, I explore the task of fine-grained visual comparisons, or relative

attributes. Given two images, we want to predict which exhibits a particular visual

attribute more than the other. Specifically, I explore the scenario where the images

exhibit subtle—thus fine-grained—visual differences. I propose improvements on two

fronts, through the algorithms and the source data, to target these fine-grained compar-

ison tasks that standard models fail to handle.

On the algorithmic front, existing relative attribute methods rely exclusively on

global ranking functions. However, rarely will the visual cues relevant to a comparison

be constant for all data, nor will humans’ perception of the attribute necessarily permit

a global ordering. Furthermore, not every image pair is even orderable for a given

attribute. Attempting to map relative attribute ranks to “equality” predictions is non-

trivial, particularly since the span of indistinguishable pairs in attribute space may vary

in different parts of the feature space. To address these issues, we introduce local learning

approaches for fine-grained visual comparisons, where a predictive model is trained on-

the-fly using only the data most relevant to the novel input. In particular, given a novel

pair of images, we develop local learning methods to (1) infer their relative attribute

ordering with a ranking function trained using only analogous labeled image pairs, (2)

infer the optimal “neighborhood”, i.e., the subset of the training instances most relevant

for training a given local model, and (3) infer whether the pair is even distinguishable,

based on a local model for just noticeable differences in attributes.

On the source data front, we address the sparsity of supervision issue that af-

fects all ranking algorithms for fine-grained tasks. Due to the pairwise nature of the
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supervision labels, the space of all possible comparisons is quadratic with respect to the

total number of images. Even if we could hypothetically obtain complete supervision,

we still cannot ensure sufficient diversity of fine-grained differences, at least not using

only the provided real images. The problem is that we lack a direct way to curate photos

demonstrating all sorts of subtle attribute changes.

We propose to overcome this challenge using synthetic images that are condition-

ally generated based on the strength of a set of attributes. Building on a state-of-the-art

image generation engine, we generate pairs of training images both passively and ac-

tively. In the passive case, we sample pairs of pre-generated training images exhibiting

slight modifications of individual attributes. The proposed “semantic jitter” approach

can be seen as a new form of data augmentation where training samples with subtly

different attributes are automatically created. In the active case, we jointly learn the at-

tribute ranking task while also learning to generate realistic image pairs that will benefit

that task. We introduce an end-to-end framework that dynamically “imagines” image

pairs that would confuse the current model, presents them to human annotators for la-

beling, then improves the predictive model with the new examples. Whether generated

actively or passively, we augment real training image pairs with these generated pairs,

and then train attribute ranking models to predict the relative strength of an attribute

in novel pairs of real images. Our results demonstrate the effectiveness of bootstrap-

ping imperfect image generators to counteract supervision sparsity in learning-to-rank

models.

Overall, our proposed methods outperform state-of-the-art baselines for relative

attribute prediction on challenging datasets, including UT-Zap50K, a large new shoe

dataset curated specifically for fine-grained comparison tasks. We find that for fine-

grained comparisons, performance is optimized when the algorithm works in conjunction

with the data source. In this thesis, the optimal pipeline functions by first densifying

the attribute space through generating the “right” data, and then applying fine-grained

algorithms that leverage and learn from these “right” data.
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Chapter 1

Introduction

Attributes are visual properties describable in words, capturing anything from mate-

rial properties (metallic, furry), shapes (flat, boxy), expressions (smiling, surprised),

to functions (sittable, drinkable). Since their introduction to the recognition commu-

nity [28, 62, 66], attributes have inspired a number of useful applications in image

search [13, 58, 59, 62, 105], biometrics [16, 51, 94], and language-based supervision

for recognition [8, 66, 84, 104, 123].

Existing attribute models come in one of two forms: categorical or relative.

Whereas categorical attributes are suited only for clear-cut predicates, such as wooden

or four-legged, relative attributes can represent “real-valued” properties that inherently

exhibit a spectrum of strengths, such as serious or sporty. These spectra allow a com-

puter vision system to go beyond recognition into comparison. For example, with a

model for the relative attribute brightness, a system could judge which of two images is

brighter than the other, as opposed to simply labeling them as bright or not bright.

Attribute comparisons open up a number of interesting possibilities and applica-

tions. In biometrics, the system could interpret descriptions like, “the suspect is taller

than him” [94]. In image search, the user could supply semantic feedback to pinpoint his

desired content: “the shoes I want to buy are like these but more masculine” [59]. For

object recognition, human supervisors could teach the system by relating new objects

to previously learned ones, e.g., “a mule has a tail longer than a donkey’s” [8, 84, 104].

For subjective visual tasks, users could teach the system their personal perception, e.g.,

about which human faces are more attractive than others [2].

One typically learns a relative attribute in a learning-to-rank setting; training

data is ordered (e.g., we are told image A has the attribute more than image B) and

a ranking function is optimized to preserve those orderings. Given a new image, the

function returns a score conveying how strongly the attribute is present [2, 14, 18, 27,

59, 69, 75, 84, 95, 96]. While a promising direction, the standard ranking approach tends
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to fail when faced with fine-grained visual comparisons. In particular, the standard

approach falls short on two fronts:

1. Model wise, the underlying algorithms cannot reliably predict comparisons when

a novel pair of images exhibits subtle visual differences. It also does not permit

equality prediction, where the novel pair of images is so similar that the difference

is indistinguishable. The former scenario includes both the case where the images

are globally similar, making all distinctions fine-grained, as well as the case where

the images are very similar only in terms of the attribute of interest.

2. Data wise, the existing relative datasets suffer from the sparsity of supervision

issue, for both label availability and image availability. Due to the pairwise nature

of the training data, which results in a quadratic number of possibilities, the la-

beling process quickly becomes intractable. Furthermore, even when exhaustively

labeled, the images within the dataset need not guarantee sufficient representation

of fine-grained differences.

We contend that fine-grained comparisons are critical to get right, since this is where

modeling relative attributes ought to have great power. Otherwise, we could just learn

coarse categories of appearance (“bright scenes”, “dark scenes”) and manually define

their ordering. In particular, fine-grained visual comparisons are valuable for sophisti-

cated image search and browsing applications, such as distinguishing subtle properties

between similar products in an online catalog, as well as analysis tasks involving nuanced

perception, such as detecting slight shades of human facial expressions or distinguishing

the identifying traits between otherwise similar-looking people. We use the term “fine-

grained” to reflect that the visual differences we want to detect are slight; similarly,

fine-grained recognition tasks in computer vision [11, 29, 74, 121] are also concerned

with visual subtleties, though for the case of classifying subclasses.

Keeping the shortcomings above in mind, in this thesis, I explore the follow-

ing approaches with the ultimate goal of improving performance on fine-grained visual

comparison tasks.

Local Ranking Functions for Attributes: Why do existing global ranking func-

tions experience difficulties when making fine-grained comparisons? The problem is
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“natural” > ? 

> ? 

vs. 

Figure 1.1: A global ranking function may be suitable for coarse ranking tasks, but fine-grained ranking
tasks require attention to subtle details—and which details are important may vary in different parts of
the feature space. The first major component of my thesis (Chap. 4) proposes a local learning approach
to train comparative attributes based on fine-grained analogous pairs.

that while a single learned function tends to accommodate the gross visual differences

that govern the attribute’s spectrum, it cannot simultaneously account for the many

fine-grained differences among closely related examples, each of which may be due to a

distinct set of visual cues. For example, what makes a slipper appear more comfortable

than a high heel is different than what makes one high heel appear more comfortable than

another; what makes a mountain scene appear more natural than a highway is different

than what makes a suburb more natural than a downtown skyscraper (Fig. 1.1).

To increase the specificity of the ranker, I introduce local learning algorithms for

fine-grained visual comparisons. Local learning is an instance of “lazy learning”, where

one defers processing of the training data until test time. Rather than estimate a single

global model from all training data, local learning methods instead focus on a subset

of the data most relevant to the particular test instance. Simply put, we want to learn

from the right data instead of with just any data. This approach helps learn fine-grained

models tailored to the new input, and makes it possible to adjust the capacity of the

learning algorithm to the local properties of the data [9]. The main idea of my approach

is to identify analogous neighbors in a pairwise setting and to learn from attribute-

specific features based on metric learning. This work appeared in CVPR 2014 [125],

NIPS 2014 [126], and a book chapter [124].

Just Noticeable Differences: Having considered a new learning model to capture

fine-grained differences, we next turn to the challenge of detecting whether two im-

ages exhibit a difference at all in the first place. What happens when the fine-grained

differences between two images become so subtle that they become indistinguishable?
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least open most open 

indistinguishable? 

indistinguishable? 

Figure 1.2: At what point is the strength of an attribute indistinguishable between two images? While
existing relative attribute methods are restricted to inferring a total order, in reality there are images
that look different but where the attribute is nonetheless perceived as “equally strong”. For example,
in the fourth and fifth images of Obama, is the difference in seriousness noticeable enough to warrant a
relative comparison? The second major component of my thesis (Chap. 5) addresses the just noticeable
differences problem for attributes.

Existing attribute models assume that all images are orderable. In particular, they as-

sume that at test time, the system can and should always distinguish which image in a

pair exhibits the attribute more. To illustrate how this is problematic, imagine you are

given a pile of images of Barack Obama, and you must sort them according to where

he looks most to least serious. Surely there will be some obvious ones where he is more

serious or less serious. There will even be image pairs where the distinction is quite

subtle, yet still perceptible, thus fine-grained. However, you are likely to conclude that

forcing a total order is meaningless: while the images exhibit different degrees of the

attribute seriousness, at some point the differences become indistinguishable. It is not

that the pixel patterns in indistinguishable image pairs are literally the same—they just

cannot be characterized consistently as anything other than “equally serious” (Fig. 1.2).

To handle such equality cases, I introduce a Bayesian just noticeable difference

model that learns from the local statistics of orderability. Just noticeable difference

(JND) is a concept from psychophysics, loosely defined as the amount a stimulus has to

be changed in order for it to be detectable by human observers at least half the time [50].

We adapt this idea for fine-grained comparisons by learning to predict the distinguisha-

bility of image pairs. Note that we borrow the term JND here only to capture our

intent. The main idea of my approach is to account for non-uniformity in the attribute

space using local statistics around the novel pair and to predict distinguishability in a

probabilistic local learning manner. Such an approach is different from traditional forms

of JND as it lacks a mechanism to modify the target stimulus (attribute strength in this
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Figure 1.3: Whereas standard data augmentation with low-level “jitter” (left) expands training data
with image-space alterations (mirroring, scaling, etc.), our semantic jitter (right) expands training data
with high-level alterations, tweaking semantic properties in a controlled manner, both passively and
actively. The third and forth major components of my thesis (Chap. 6 and 7) propose to densify the
attribute space using synthetically generated images.

case) incrementally in arbitrary small steps. This work appeared in ICCV 2015 [127]

and a book chapter [124].

Dense Supervision through Semantic Jitter: Aside from algorithmic improve-

ments, I also explore the orthogonal issue of supervision sparsity for fine-grained compar-

isons. Given a dataset, how do we ensure that the existing images sufficiently illustrate

a diverse set of fine-grained differences? The underlying assumption of existing models

(including our proposed local models above) is that the “right” data is already available

in the training set, and that even if the existing labels are sparse, it is always possible

to label more image pairs to increase the density of the overall supervision. However,

this is not necessarily the case when training a fine-grained ranking model. The issue

is that we lack a direct way to curate photos demonstrating all sorts of subtle attribute

changes. For example, how might we gather unlabeled image pairs depicting all subtle

differences in “sportiness” in clothing images or “surprisedness” in faces? As a result,

even today’s best datasets contain only partial representations of an attribute.

To overcome this sparsity of supervision issue, I propose the addition of synthetic

image pairs into the training data when learning any fine-grained ranking models. The

idea is to synthesize plausible photos exhibiting variations along a given attribute from

a generative model, thereby recovering samples in regions of the attribute space that are

under-represented among the real training images. This can be seen as semantic “jitter-
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ing” of the data to augment real image training sets with nearby variations. The systemic

perturbation of images through label-preserving transforms like mirroring/scaling is now

common practice in training deep networks for classification [25, 106, 116], and more

recently for ranking [107, 108, 122] as well. Whereas such low-level image manipula-

tions are performed independent of the semantic content of the training instance, the

variations introduced by my approach are high-level changes that affect the very mean-

ing of the image. In other words, our jitter has a semantic basis rather than a purely

geometric/photometric basis (Fig. 1.3). This work appeared in ICCV 2017 [128].

Active Training Image Creation: Finally, I take this sparsity of supervision issue

one step further by learning to generate these synthetic image pairs in an active manner.

While traditional active learning methods can try to prioritize informative instances for

labeling, the curation problem remains: existing active selection methods scan the pool of

manually curated unlabeled images when choosing which ones to label [32, 113, 114, 135].

Our idea is for a system to directly synthesize image pairs that would confuse the current

ranking model, then present them to human annotators for labeling. While my semantic

jittering approach above generates individual images passively by adjusting one target

attribute at a time, my active training approach here generates pairs of images by

adjusting multiple attributes simultaneously in an adversarial manner.

To this end, I propose an end-to-end deep network consisting of an attribute-

conditioned image generator, a ranking network, and a control network. The control

network learns to generate latent visual parameters to present to the image generator so

as to form image pairs that would be difficult for the ranker. Thus, rather than passively

generate synthetic image pairs offline based on heuristics, the control module learns a

function to create novel instances, potentially improving the exploration of the relevant

image space. We train the ranker and controller in an adversarial manner, and we solicit

manual labels for the resulting images in batches. As a result, the set of synthesized

training instances continues to evolve, as does the ranker. This work appears in [129].

To summarize, in this thesis, I address fundamental issues on both the algorithm

and the data fronts for fine-grained visual comparison problems. In particular, I propose

(1) to learn local models tailored to each novel comparison at hand [125, 126], (2) to

allow equality predictions based on local distinguishability statistics [127], and (3) to

densify under-represented regions of the attribute space using synthetic image pairs,

both passively [128] and actively [129].
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Lastly, to complement these new approaches, I also curate and crowdsource labels

for a brand new large-scale shoe dataset, the UT Zappos50K (UT-Zap50K), which is

tailor made for fine-grained comparison tasks. We contribute to this dataset over two

works, collecting over 45, 000 pairwise labels across 11 relative attributes. This is to-date

the largest relative attribute dataset that includes instance-level supervision.

Roadmap: The rest of this dissertation proceeds as follows. In Chapter 2, we discuss

related work in the areas of relative attributes, local learning, fine-grained visual learning,

image synthesis, and active learning. In Chapter 3, we present the various datasets

used throughout this thesis. In Chapters 4 and 5, we discuss in detail our proposed

approaches for fine-grained visual comparisons and equality prediction. In Chapter 6

and 7, we present new methods to improve ranking models in general by addressing the

sparsity of supervision issue. Finally, we conclude in Chapter 8 with an overview of

potential future work beyond this thesis.
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Chapter 2

Related Work

In this chapter, I review the related work to the research that will be presented in

Chapters 4, 5, 6, and 7. These literature provide a context for our proposed methods

and serve as a starting point for readers regarding the topics covered in this thesis.

Specifically, I address the areas of relative attributes, fine-grained local learning, image

generation, learning from synthetic images, and active learning.

2.1 Attribute Comparison

Since the introduction of relative attributes [84], the task of attribute comparisons has

gained attention for its variety of applications, such as online shopping [59, 60], biomet-

rics [93], novel forms of low-supervision learning [8, 104], font selection [81], 3D model

editing [15, 130], and visual semantic reasoning [20, 109]. The original approach [84]

adopts a learning-to-rank framework (RankSVM) [49] that learns a global linear rank-

ing function for each attribute. The model uses pairwise supervision—pairs of images

ordered according to their perceived attribute strength based on human annotators—and

trains a ranking function that preserves those orderings. Given a novel pair of images,

the ranker indicates which image has the attribute more. Subsequently, non-linear rank-

ing functions [69], combining feature-specific rankers [18], and multi-task learning [17]

have all shown to further improve accuracy. More recently, the success of deep networks

has motivated end-to-end frameworks for learning features and attribute ranking func-

tions simultaneously [77, 107, 108, 122]. While these deep models offer a higher learning

capacity compared to their “shallow” counterparts, they also come with a greater need

for labeled data and higher computation cost.

Aside from these learning-to-rank formulations, researchers have applied the Elo

rating system for biometrics [94], and regression over “cumulative attributes” for age and

crowd density estimation [16]. Other work investigates features tailored for attribute

comparisons, such as facial landmark detectors [96] and “visual chains” to discover

8



relevant parts [117].

While all prior methods produce a single global function for each attribute, my

work in Chapter 4 proposes to learn local functions tailored to each comparison at hand.

Furthermore, at test time, we move beyond the standard relative decisions (e.g., image

A is more sporty than image B) by permitting a third equality option based on dis-

tinguishability, something that no existing work has attempted. Meanwhile, our dense

supervision approach in Chapter 6 contributes to the learning by densifying the label

space, thus boosting the overall performance of all rankers regardless of the learning algo-

rithm used. Our experiments support this claim for two popular ranking frameworks—

the above mentioned RankSVM [84] and a Siamese deep convolutional neural network

(CNN) [107].

2.2 Fine-Grained Visual Tasks

The fact that humans exhibit inconsistencies in their comparisons is well known in social

choice theory and preference learning [10]. In existing global models [18, 27, 59, 69, 75,

84, 96], intransitive constraints would be unaccounted for and treated as noise. We are

interested in modeling attributes where there is consensus about comparisons, only they

are subtle, or in other words, fine-grained. Rather than personalize a model towards an

observer [2, 14, 57], we want to discover the (implicit) map of where the consensus for

decision boundaries in attributes exists. The attribute calibration method of [97] post-

processes attribute classifier outputs so they can be fused for multi-attribute search.

Our local methods are also conscious that differences in attribute outputs taken at “face

value” can be misleading, but our goal and approach are entirely different.

In the facial attractiveness ranking method of [14], the authors train a hierarchy

of support vector machine (SVM) classifiers to recursively push an image into buckets of

more/less attractive faces. The leaf nodes contain images “unrankable” by the human

subject, which can be seen as indistinguishability for the specific attribute of human

attractiveness. Nonetheless, the proposed method is not applicable to our problem. It

learns a ranking model specific to a single human subject, whereas we learn a subject-

independent model. Furthermore, the training procedure [14] has limited scalability,

since the subject must rank all training images into a partial order. In our domains

of interest, where thousands or more training instances are standard, getting a reliable

global partial order on all images remains an open challenge.
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Research on fine-grained visual categorization aims to recognize objects in a single

domain, e.g., birds [11, 29], planes [74], and cars [121]. While such problems also require

making distinctions among visually close instances, our goal is to compare attributes,

not categorize objects.

2.3 Local Learning

Existing local learning algorithms primarily vary in how they exploit the labeled in-

stances nearest to a test point. One strategy is to identify a fixed number of neighbors

most similar to the test point, then train a model with only those examples (e.g., linear

regression [4], neural network [9], SVM [132]). Alternatively, the nearest training points

can be used to learn a transformation of the feature space (e.g., Linear Discriminant

Analysis); after projecting the data into the new space, the model is better tailored to

the query’s neighborhood properties [23, 26, 38, 115]. In local selection methods, strictly

the subset of nearby data is used, whereas in locally weighted methods, all training points

are used but weighted according to their distance [4]. For all these prior methods, a test

case is a new data point and its neighboring examples are identified by nearest neigh-

bor search. In contrast, my approach in Chapter 4 learns local ranking functions for

comparisons, which requires identifying analogous neighbor pairs in the training data.

Furthermore, we also explore how to predict the variable-size set of training instances

that will produce an effective discriminative model for a given test instance.

In information retrieval, local learning methods have been developed to sort doc-

uments by their relevance to query keywords [5, 26, 34, 71]. They take strategies quite

similar to the above, e.g., building a local model for each cluster in the training data [71],

projecting training data onto a subspace determined by the test data distribution [26],

or building a model with only the query’s neighbors [5, 34]. Though a form of ranking,

the problem setting in all these methods is quite different from ours. There, the train-

ing examples consist of queries and their respective sets of ground truth “relevant” and

“irrelevant” documents, and the goal is to learn a function to rank a keyword query’s

relevant documents higher than its irrelevant ones. In contrast, we have training data

comprised of paired comparisons, and the goal is to learn a function to compare a novel

query pair.
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2.4 Attribute and Image Synthesis

The key to creating dense supervision from synthetic images is a generative model that

can progressively modify the target attribute while preserving the rest (my goal in Chap-

ter 6 and 7). Attribute-specific alterations have been considered in several recent meth-

ods, primarily for face images. Some target a specific domain and attribute, such as

methods to enhance the “memorability” [55] or age [53] of facial photos, to edit outdoor

scenes with transient attributes like weather [65], or to modify 3D attributes such as

pose and depth of objects [22].

Alternatively, image synthesis is of interest in the low-shot learning community,

where training data for the novel classes are severely limited [22, 37, 64, 78]. The

primary draw is the ability to “hallucinate” variability for learning where the variability

is practically non-existent. While synthesis often happens in the image space, it can also

happen in the feature space directly [22, 37, 40, 64]. Though similarly motivated, our

focus is not restricted to low-shot cases.

Meanwhile, the success of deep neural networks for image generation (i.e., Gen-

erative Adversarial Nets (GAN) [35, 43, 45, 76, 92, 131, 133, 137] or Variational Auto-

Endcoder (VAE) [36, 56, 61]) opens the door to learning how to generate images condi-

tioned on desired properties [24, 68, 83, 118, 119]. For example, a conditional multimodal

auto-encoder can generate faces from attribute descriptions [83], and focus on identity-

preserving changes [68]. Furthermore, conditional models can also synthesize an image

based on an input, either a label map [45, 137] or a latent attribute label [67, 76, 111, 118].

To densify the pairwise label space for fine-grained comparisons, we employ the state-

of-the-art model of [118] due to its generality. We show how to sample images using

this generator to “fill in the gaps” in the label space. Whereas the above methods aim

to produce an image for human inspection, we aim to generate dense supervision for

learning algorithms. We are the first to propose direct image generation as a solution to

the sparsity of supervision problem.

Lastly, despite the success of deep neural networks, research has demonstrated

their sensitivity to small perturbations to the input image through “fooling networks” [79,

80]. This field of work relates to our active image generation approach in Chapter 7,

where rather than using adversarial generation to understand how features influence a

classifier, our goal is to synthesize the very training samples that (once labeled by human
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annotators) will strengthen a learned ranker. Unlike any of the above, we create images

for active query synthesis.

2.5 Learning using Synthetic Images

The use of synthetic images as training data—as we have proposed for learning rank-

ing models—has been explored to a limited extent, primarily for human bodies. Tak-

ing advantage of high quality graphics models for humanoids, rendered images of peo-

ple from various viewpoints and body poses provide free data to train pose estima-

tors [100, 101, 112] or person detectors [90]. Using the first frame of a video as reference,

one can personalize a pose estimator by synthesizing deformations [85] or train an object

tracker by synthesizing plausible future frames [54]. For objects beyond people, recent

work considers how to exploit non-photorealistic images generated from 3D CAD models

to augment training sets for object detection [88, 120] and for indoor scene understand-

ing [134], or words rendered in different fonts for text recognition [46]. In addition,

others explore how to adversarially generate “hard” low-level transformations that are

label-preserving for body pose estimation [89], greedily select useful transformations for

image classification [87], or actively evolve part-based 3D shapes to learn shape from

shading [120]. Concurrent work [103] comes closest in motivation to our dense supervi-

sion approach by recognizing the potential to use synthetic images for learning. However,

unlike [103], we use the generated synthetic images directly for training, whereas [103]

first learns a refiner network to transform the synthetic images into more realistic images.

While these methods share our concern about the sparsity of supervision, our

focus on attributes and ranking is unique. Furthermore, most methods assume a graphics

engine and 3D model to render new views with desired parameters (pose, viewpoint,

etc.). In contrast, we investigate (in Chap. 6 and 7) images generated from a 2D image

synthesis engine in which the modes of variation are controlled by a learned model.

Being data-driven can offer greater flexibility, allowing tasks beyond those requiring

a 3D model, and variability beyond camera pose and lighting parameters, albeit in

exchange for noisier generation.

As discussed above, in the low-shot recognition regime, several recent methods

explore creative ways to hallucinate the variability around sparse real examples [22, 37,

39, 64, 98], typically leveraging the observed inter-sample transformations to guide syn-

thesis in feature-space. However, whereas most of these methods use manually defined
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heuristics to sample synthetic images, we show in Chapter 7 how to dynamically derive

the images most valuable to training, via an adversarial control module learned jointly

with the attribute ranker.

2.6 Active Learning

Active learning has been studied for decades [99]. For visual recognition problems,

pool-based methods are the norm: the learner scans a pool of unlabeled samples and

iteratively queries for the label on one or more of them based on uncertainty or expected

model influence (e.g., [32, 113, 114, 135]). Active ranking models adapt the concepts of

pool-based learning to select pairs for comparison [70, 91]. Hard negative mining—often

used for training object detectors [30, 102]—also focuses the learner’s attention on useful

samples, though in this case from a pool of already-labeled data. Rather than display

one query image to an annotator, the approach in [44] selects a sample from the pool

then displays a synthesized image spectrum around it in order to elicit feature points

likely to be near the true linear decision boundary for image classification. We do not

perform pool-based active selection. Unlike any of the above, our approach in Chapter 7

creates image samples that (once labeled) should best help the learner, and it does so

in tight coordination with the ranking algorithm.

In contrast to pool-based active learning, active query synthesis methods request

labels on novel samples from a given distribution [1, 3, 99, 136]. When the labeler is

a person (as opposed to an oracle or experimental outcome), a well known challenge

with query synthesis is that the query may turn out to be unanswerable [6]. Perhaps

accordingly, there is very limited prior work attempting active query synthesis for image

problems, and to our knowledge they are limited to toy cases like MNIST digits [136].

Our active image generation work in Chapter 7 capitalizes on the recent advances in

image generation discussed above to create photorealistic queries that are most often

answerable. Furthermore, rather than sample from an input distribution, our selection

approach is discriminative: it optimizes the latent parameters of an image pair that

directly affect the current deep ranking model.
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Chapter 3

Datasets

In this chapter, I present the datasets across various domains that are used

throughout this thesis. The supervision on these datasets comes in the form of rela-

tive annotations between a pair of images, i.e., given a target attribute A, image i is

perceived to have “more/less” (or “equal”) of A than image y. Due to the fine-grained

nature of the comparison tasks, we require the pairwise supervision to have the utmost

precision, something that most of the existing datasets do not enforce.

First, we present our newly collected large-scale shoe dataset (Sec. 3.1), followed

by our subsequent improvements with an additional lexicon and supervision (Sec. 3.2).

Then, we present the various face datesets (Sec. 3.3) and the scene dataset (Sec. 3.4)

used in our experiments. For our methods in Chapters 6 and 7, we also make use of

synthetically generated image pairs for training ranking models. However, we will leave

the specific details of the synthetic image datasets to the respective chapters.

3.1 UT-Zap50K: Fine-Grained Shoe Dataset

To facilitate the evaluation of our fine-grained models, we collected a new UT Zap-

pos50K dataset (UT-Zap50K) specifically targeting the fine-grained attribute compar-

ison task.1 The dataset is fine-grained due to two factors: 1) it focuses on a narrow

domain of content, and 2) we develop a two-stage annotation procedure to isolate those

comparisons that humans find perceptually very close.

The image collection is created in the context of an online shopping task, with

50,000 catalog shoe images from Zappos.com. For online shopping, users care about

precise visual differences between items. For instance, it is more likely that a shopper is

deciding between two pairs of similar men’s running shoes instead of between a woman’s

high heel and a man’s slipper. The images are roughly 150 × 100 pixels and shoes are

1UT-Zap50K and all related data are available for download at vision.cs.utexas.edu/projects/finegrained
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Shoes Sandals Slippers Boots 

Figure 3.1: Sample images from each of the high-level shoe categories of UT-Zap50K.

pictured in the same orientation for convenient analysis (Fig. 3.1). For each image, we

also collect its meta-data (shoe type, materials, manufacturer, gender, etc.) that are

used to filter the shoes on Zappos.com (Tab. 3.1).

Using Mechanical Turk (mTurk), we collect ground truth comparisons for four

relative attributes: open, pointy at the toe, sporty, and comfortable. The attributes are

manually selected for their potential to exhibit fine-grained differences. A worker is

shown two images and an attribute name, and must make a relative decision (more, less,

equal) and report the confidence of his decision (high, mid, low). We repeat the same

comparison for five workers in order to vote on the final ground truth. We collect 12,000

total pairs, 3,000 per attribute. After removing the low confidence (less than “mid”

confidence), the low agreement (less than 80% worker agreement), and “equal” pairs,

each attribute has between 1,500 to 1,800 total ordered pairs.

Of all the possible 50, 0002 pairs we could get annotated, we want to prioritize the

fine-grained pairs. To this end, first, we sampled pairs with a strong bias (80%) towards

intra-category and -gender images (based on the meta-data). We call this collection

UT-Zap50K-1. We found ∼40% of the pairs came back labeled as “equal” for each

attribute. While the “equal” label can indicate that there is no perceivable difference

in the attribute, we also suspected that it was an easy fallback response for cases that

required a little more thought—that is, those showing fine-grained differences. Thus, we

next posted the pairs rated as “equal” (4,612 of them) back onto mTurk as new tasks,

but without the “equal” option. We asked the workers to look closely, pick one image

over the other, and give a one sentence rationale for their decisions. We call this set

UT-Zap50K-2. Screenshots of the mTurk tasks are shown in Figure 3.2.

Interestingly, the workers are quite consistent on these pairs, despite their diffi-

culty. Overall, 63% of the fine-grained pairs (and 66% of the coarser pairs) had at least

four out of five workers agree on the same answer with above average confidence. This
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Table 3.1: Taxonomy of potential meta-data labels for each image in the UT-Zap50K dataset. Each
image is not guaranteed to have all labels, except for “Category” and “SubCategory”, but could have
multiple values within each label.

Labels Potential Values

Category {shoes, boots, sandals, slippers}

SubCategory {ankle, athletic, flats, heels, loaders, ...}

HeelHeight {under 1in, 1in-1 3/4in, 2in-2 3/4in, ...}

Insole {leather, padded, textile, memory foam, polyurethane, ...}

Closure {ankle strap, buckle, pull-on, lace up, zipper, ...}

Gender {men, women, boys, girls}

Material {leather, rubber, suede, neoprene, sheepskin, ...}

ToeStyle {open, round, capped, snub, peep, ...}

consistency ensures we have a dataset that is both fine-grained as well as reliably ground

truthed. Compared to an existing Shoes attribute dataset [7] with relative attributes [59],

UT-Zap50K is about 3.5× larger, offers meta-data and 10× more comparative labels,

and most importantly, specifically targets fine-grained tasks.

Finally, while our pre-processing methodology of the worker annotations above

is a standard process, my equality prediction work in Chapter 5 requires even more

precision in the annotations. As such, we create another set of fine-grained shoe labels,

which we call UT-Zap50K-EQ, specifically for this work with an even more stringent

pre-process methodology. We require the use of both ordered pairs Po and “equal” pairs

Pe in this case. For Po, we use all coarse and fine-grained pairs for which all five workers

agreed and had high confidence. Even though the fine-grained pairs might be visually

similar, if all five workers could come to agreement with high confidence, then the images

are most likely distinguishable. For Pe, we use all fine-grained pairs with three or four

workers in agreement and only “mid” confidence. Since the fine-grained pairs have

already been presented to the workers twice, if the they are still unable to come to an

consensus with high confidence, then the images are most likely indistinguishable. The

resulting dataset has 4,778 total annotated pairs, consisting of on average 800 ordered

and 350 indistinguishable pairs per attribute.

3.2 Improved UT-Zap50K with a Fine-Grained Lexicon

Given the initial success of our UT-Zap50K dataset for fine-grained comparison tasks,

which will be described in Chapters 4 and 5, we next expanded it by turning our at-
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(a) Round one to obtain UT-Zap50K-1.

(b) Round two to obtain UT-Zap50K-2.

Figure 3.2: Sample questions from mTurk data collection framework.

tention towards the selection of the attribute names. The lexicon of attributes used in

existing relative attributes datasets, including our initial UT-Zap50K, is selected based

on intuitions, i.e., words that seem domain relevant [60] or words that seem to exhibit

the most subtle fine-grained differences.

However, this kind of intuition is inherently biased by the person making the

selection. Therefore, to address this limitation, we (1) use crowdsourcing to mine for an

attribute lexicon that is explicitly fine-grained, and (2) collect a large number of pairwise

labels for each attribute in that lexicon.

Given a pair of images, we ask mTurk workers to complete the sentence, “Shoe

A is a little more 〈insert word〉 than Shoe B” using a single word. They are instructed

to identify subtle differences between the images and provide a short rationale. The
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Figure 3.3: Word cloud depicting our crowd-mined data for a fine-grained relative attribute lexicon for
shoes (before post-processing).

goal is to find out how people differentiate fine-grained differences between shoe images.

Over 1,000 workers participated in the study, yielding a total of 350+ distinct word

suggestions across 4,000 image pairs viewed. This approach to lexicon generation takes

inspiration from [73], but fine-tuned towards eliciting “almost indistinguishable” visual

changes rather than arbitrary attribute differences.

Figure 3.3 shows a word cloud of the raw results, which we post-process through

merging of synonyms and pruning based on user rationales. For example, if the pro-

vided rationale fails to explain the word choice, that response would be removed. After

post-processing, we select the 10 most frequent words as the new fine-grained rel-

ative attribute lexicon for shoes: comfort, casual, simple, sporty, colorful, durable,

supportive, bold, sleek, and open.

Using this new lexicon, we collect pairwise supervision for about 4,000 pairs for

each of the 10 attributes, using images from the same UT-Zap50K image collection

described in Section 3.1. Figure 3.4 shows sample shoe image pairs along with their

relative labels. This is a step towards denser supervision on real images—more than

three times the comparison labels provided in the original dataset. Still, as we will see

in Chapters 6 and 7, the greater density offered by synthetic training instances is needed

for best results.
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Comfort Casual Sporty Durable Sleek
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Figure 3.4: Sample image pairs from the improved UT-Zap50K dataset for five attributes from the fine-
grained lexicon. The top section represents ordered pairs (the left image has “more” of the attribute
than the right image) while the bottom section represents “equal” pairs. Note that some images can
look drastically different overall while still exhibiting subtle differences in the target attribute space,
and vice-versa.

3.3 Face Datasets

Aside from our UT-Zap50K dataset in the shoe domain, the most popular cat-

egory of datasets used for fine-grained comparison is faces. Out of those datasets, the

LFW-10 dataset [96] is the only one that contains pairwise supervision at the instance-

level. The LFW-10 dataset consists of 2,000 face images taken from Labeled Faces in

the Wild (LFW) [42]. It contains 10 attributes: bald, dark hair, big eyes, good looking,

masculine, mouth open, smiling, visible teeth, visible forehead, and young. After pruning

pairs with less than 80% agreement from the workers, there are 600 pairwise labels on

average per attribute. Figure 3.5 shows sample face image pairs from the dataset.
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Big Eyes Masculine Mouth Open Smiling Young
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Figure 3.5: Sample image pairs from the LFW-10 dataset [96], in the same format as Figure 3.4.

Another relevant face dataset is the Public Figures [63] (PubFig), which is one

of the pioneer datasets used for relative comparison tasks (Fig. 3.6, right) and has been

used as the benchmark for many prior works. PubFig contains 772 images with 11

attributes: male, white, young, smiling, chubby, forehead, bushy eyebrows, narrow eyes,

pointy nose, big lips, and round face. However, instead of instance-level supervision,

PubFig contains only category-level supervision (e.g., “Viggo smiles less than Miley”)

that is propagated down uniformly to all image instances [59, 69, 84]. As such, there

are on average over 20,000 pairwise labels per attribute.

In addition, for our experiments in Chapter 6, we form a small face dataset called

PFSmile using images from the Public Figures dataset (PubFig) [63, 84]. We select

eight frontal images each from eight random individuals, with the frontal images showing

different degrees of smilingness for the given individual (e.g., images of Zach Efron going

from not smiling at all to fully smiling). We use smiling because it is the only PubFig

attribute that manifests fine-grained changes on the same individual (e.g., it does not

display Zach both as bald and less bald). This limitation of the data actually reinforces

the difficulty of manually curating images with subtle differences for learning, as we will

see in Chapter 6. We collect labels on all possible pairwise comparisons among images

of the same individual. After pruning, there are 211 pairwise labels for PFSmile.
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Figure 3.6: Sample images from the Outdoor Scene Recognition dataset [82] (left) and the Public Figure
Faces dataset [63] (right).

Finally, with the same motivation as UT-Zap50K-EQ above, we create another

set of fine-grained face labels, which we call LFW-10-EQ. For Po, we use all pairs

labeled “more” or “less” by at least four workers. For Pe, we use pairs where at least

four workers said “equal”, as well as pairs with the same number of “more” and “less”

votes. The latter reflects that a split in decision signals indistinguishability. Due to

the smaller scale of LFW-10, we could not enforce full agreement on ordered pairs as

we did for UT-Zap50K-EQ; such pruning would eliminate most of the labeled data.

The resulting dataset has 5,543 total annotated pairs, on average 230 ordered and 320

indistinguishable pairs per attribute.

3.4 Scene Dataset

Finally, the Outdoor Scene Recognition [82] (OSR) dataset is another one of

the pioneer datasets used for relative comparison tasks (Fig. 3.6, left). OSR contains

2,688 scene images with 6 attributes: natural, open, perspective, large size, diagonal,

and close depth. Just like PubFig, OSR contains only category-level supervision that is

propagated down uniformly to all image instances [59, 69, 84], resulting in over 20,000

pairwise labels per attribute on average.

To our knowledge, our UT-Zap50K and LFW-10 are the only existing datasets

that contain image-level comparisons (e.g., “this particular shoe is more pointy than

that particular shoe”). These image-level comparisons are more costly to obtain but

essential for testing fine-grained attributes thoroughly.

Having defined all the datasets that will support the experiments in this thesis,

we now present the proposed approaches.
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Chapter 4

Local Ranking Functions for Attributes

When performing attribute comparisons, existing methods train a global ranking func-

tion using all available constraints, with the implicit assumption that more training

data should only help better learn the target concept. While such an approach tends

to capture the coarse visual comparisons, it can be difficult to derive a single set of

model parameters that adequately represents both these big-picture contrasts and more

subtle fine-grained comparisons (recall Fig. 1.1).1 For example, for a dataset of shoes,

it will map all the sneakers on one end of the formal spectrum, and all the high heels

on the other, but the ordering among closely related high heels will not show a clear

pattern. This suggests there is an interplay between the model capacity and the density

of available training examples, prompting us to explore local learning solutions.

In this chapter, we propose a novel local learning approach to learn a custom

attribute-specific model on-the-fly for each comparison pair at hand. We first present a

brief overview of two types of widely used ranking functions (Sec. 4.1.1 and 4.1.2). Next,

we introduce our local ranking approach (Sec. 4.2.1) and the mechanism for selecting

fine-grained neighboring pairs with attribute-specific metric learning (Sec. 4.2.2). On

three challenging datasets from distinct domains, including our newly curated large

shoe dataset UT-Zap50K that focuses on fine-grained attribute comparisons (Sec. 3.1),

we show our approach improves the state-of-the-art in relative attribute predictions

(Sec. 4.3). After the results, we present an extension of the local attribute learning idea

that learns the neighborhood of relevant training data that ought to be used to train a

model on-the-fly (Sec. 4.4).

The work in this chapter was published in CVPR 2014 [125], NIPS 2014 [126]

and a book chapter [124].

1This is true particularly for common learning algorithms like support vector machines, though potentially less prob-
lematic in very high capacity learning algorithms with deep networks. We explore both in this thesis.
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4.1 Ranking Functions for Relative Attributes

Relative Attributes, as originally proposed by Parikh and Grauman [84], treats the

attribute comparison task as a learning-to-rank problem. The idea is to use ordered

pairs (and optionally “equal” pairs) of training images to train a ranking function that

will generalize to new images. Compared to learning a regression function, the ranking

framework has the advantage that training instances are themselves expressed compar-

atively, as opposed to requiring a rating of the absolute strength of the attribute per

training image.

For each attribute A (e.g., comfortable) to be learned, we take as input two sets

of annotated training image pairs. The first set consists of ordered pairs, Po = {(i, j)},

for which humans perceive image i to have the attribute more than image j. That is,

each pair in Po has a “noticeable difference”. The second set consists of unordered, or

“equal” pairs, Pe = {(m,n)}, for which humans cannot perceive a difference in attribute

strength. Refer to Section 3.1 for discussion on how such human-annotated data can be

reliably collected.

Let xi ∈ R
d denote the d-dimensional feature descriptor for image i, such as

a GIST descriptor [110], a color histogram, or the vectorized image pixels, and let

RA : Rd → R be a ranking function for attribute A. In my thesis work, I explore two

main families of ranking functions: large-margin rankers and deep rankers. Both are

widely used in the literature [8, 60, 84, 107, 108, 122] and offer different trade-offs, to

be discussed below.

4.1.1 Large-Margin Ranking Functions

Using a large-margin approach based on the SVM-Rank framework [49], the goal for a

global relative attribute is to learn the parameters wA ∈ R
d that optimize the rank func-

tion, RA(x) = w
T
Ax. These parameters aim to preserve the orderings in Po, maintaining

a margin between them in the 1D output space, while also minimizing the separation

between the unordered pairs in Pe. By itself, the problem is NP-hard, but [49] introduces

slack variables and a large-margin regularizer to approximately solve it. The learning

objective is:
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minimize
(

1
2
||wA||22 + C

(
∑

ξ2ij +
∑

γ2
mn

))

(4.1)

s.t. w
T
A(xi − xj) ≥ 1− ξij; ∀(i, j) ∈ Po

|wT
A(xm − xn)| ≤ γmn; ∀(m,n) ∈ Pe

ξij ≥ 0; γmn ≥ 0,

where the constant C balances the regularizer and ordering constraints, and ξij and

γmn denote slack variables. By projecting images onto the resulting hyperplane wA, we

obtain a 1D global ranking for that attribute, e.g., from least to most comfortable.

Given a test pair (xr,xs), if RA(xr) > RA(xs), then image r exhibits the at-

tribute more than image s, and vice versa. While [84] uses this linear formulation, it

is also kernelizable and so can produce non-linear ranking functions. A large-margin

ranker’s ease of training (convex optimization) and its ability to handle pairwise incon-

sistencies make it suitable for our purpose. Furthermore, the SVM-Rank approach can

be successfully trained with relatively few labeled instances, a scenario that is practically

important for attribute comparisons tasks, where pairwise supervision is often limited

(see Sec. 3.1).

Our local approach defined in Section 4.2 draws on this particular large-margin

formulation (referred to as RankSVM from here on). As we will see later in Chapters 6

and 7, while the recent deep neural networks (defined next in Sec. 4.1.2) have higher

learning capacities (even than with a non-linear kernel), their need for a large amount

of training data makes them less suitable for our local approach.

4.1.2 Deep Ranking Functions

With the recent success of deep neural networks, some research has extended relative

attributes into the deep domain by designing end-to-end networks that simultaneously

learn the image features and the ranker [107, 108, 122]. One common aspect of these

end-to-end networks is the use of the RankNet algorithm [12], which we will briefly

overview below.

RankNet is a neural network based ranking algorithm with a probabilistic cost

function. Given image i and its feature descriptor xi, we would like to learn a ranking

function RA : Rd → R, consisting of a series of neural network modules, that outputs
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the corresponding real-valued strength vi for attribute A. Let (xi,xj) be a pair of image

features (from either Po or Pe) and tij be its target probability indicating the probability

of RA(xi) being higher valued than RA(xj). RankNet maps this rank estimate to a

pairwise posterior probability pij using a logistic function:

pij =
1

1 + e−(vi−vj)
. (4.2)

The ranking loss is then defined as:

Lrank = −tij log(pij)− (1− tij) log(1− pij), (4.3)

which is a standard cross-entropy loss where tij = 1 if (i, j) ∈ Po or tij = 0.5 if (i, j) ∈ Pe.

This loss function is ideal for ranking purposes as it asymptotes to a linear function,

making it more robust to noise compared to a regular quadratic function. Furthermore,

it can also handle equality cases where the cost becomes symmetric. The overall function

can be trained using stochastic gradient descent or its variations.

Compared to the large-margin ranker above, a deep ranker has a much higher

learning capacity. Using the RankNet algorithm, we are also free to design the learning

network without restrictions, as long as it outputs a vi at the end. However, the higher

learning capacity also comes with a greater need for labeled data and a higher compu-

tation cost. Existing methods rely on data augmentation techniques in the image-space

(mirroring, scaling, etc.) to compensate for the data needs, something that we discuss

in detail in Chapter 6 and 7. In the same chapters, we also employ the deep rankers in

our dense supervision framework.

4.2 Approach

With the understanding of the existing ranker choices, in the approach presented in

this chapter, I focus on improving fine-grained performance using RankSVM, the large-

margin ranker. A key premise of local learning is that improving accuracy is not simply

a matter of using a higher capacity learning algorithm. While a low capacity model can

perform poorly in well-sampled areas, unable to sufficiently exploit the dense training

data, a high capacity model can produce unreliable (yet highly confident) decisions in

poorly sampled areas of the feature space [9]. Different properties are required in different
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Figure 4.1: Given a novel test pair (blue △) in a learned metric space, my proposed local approach
(a) selects only the most relevant neighbors (green #) for training, which leads to ranking test image 2
over 1 in terms of sporty. In contrast, the standard global approach (b) defined in Section 4.1.1 uses all
training data (green # & red ×) for training; the unrelated training pairs dilute the training data. As
a result, the global model accounts largely for the coarse differences, and incorrectly ranks test image 1
over 2. The end of each arrow points to the image with more of the attribute (sporty). Note that the
rank of each point is determined by its projection onto w.

areas of the feature space. Furthermore, in our visual ranking domain, we can expect

that as the amount of available training data increases, more human subjectiveness

and ordering inconsistencies will emerge, further straining the validity of a single global

function.

4.2.1 Local Learning for Visual Comparisons

Our idea is to explore a local learning approach for attribute ranking. The idea is to train

a ranking function tailored to each novel pair of images Xq = (xr,xs) that we wish to

compare. We train the custom function using only a subset of all labeled training pairs,

exploiting the data statistics in the neighborhood of the test pair. Let PA = {Po∪Pe} be

all training pairs with respect to attribute A. In particular, we sort PA by its similarity

to (xr,xs), then compose a local training set P ′
A consisting of the top K neighboring

pairs, P ′
A = {(xk1,xk2)}

K
k=1. We explain in the next section how we define similarity

between pairs. Then, we train a ranking function on-the-fly, and apply it to compare
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Figure 4.2: Illustration of analogous image pairs. Comparing a novel test pair to three training pairs,
with each column representing a pair of images. Left: Both top images and bottom images are visually
similar, resulting in the lowest pairwise distance. Middle: While the top images are dissimilar, the
bottom images are similar, keeping the pairwise distance relatively low. Right: Both top images and
bottom images are visually dissimilar, resulting in the highest pairwise distance. Pair #1 is the most
analogous pair to the novel test pair in this case.

the test images. Experiments here use the RankSVM objective (Eq. 4.1). Thus, while

the capacity of the trained models will be fixed throughout the feature space, crucially,

the composition of their training sets and the resulting models will vary.

While simple, our framework directly addresses flaws that hinder existing meth-

ods. By restricting training pairs to those visually similar to the test pair, the learner

can zero in on features most important for that kind of comparison. Such a fine-grained

approach helps to eliminate ordering constraints that are irrelevant to the test pair. For

instance, when evaluating whether a high-topped athletic shoe is more or less sporty

than a similar looking low-topped one, our method will exploit pairs with similar vi-

sual differences, as opposed to trying to accommodate in a single global function the

contrasting sportiness of sneakers, high heels, and sandals (Fig. 4.1).

4.2.2 Selecting Fine-Grained Neighboring Pairs

A key factor to the success of the local rank learning approach is how we judge similarity

between pairs. Intuitively, we would like to gather training pairs that are somehow

analogous to the test pair, so that the ranker focuses on the fine-grained visual differences

that dictate their comparison. This means that not only should individual members of

the pairs have visual similarity, but also the visual contrasts between the two test pair

images should mimic the visual contrasts between the two training pair images (Fig. 4.2).

In addition, we must account for the fact that we seek comparisons along a particular

attribute, which means only certain aspects of the image appearance are relevant.

To fulfill these desiderata, we define a paired distance function that incorporates
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attribute-specific metric learning. Let Xq = (xr,xs) be the test pair, and let Xt =

(xu,xv) be a labeled training pair for which (u, v) ∈ PA. We define their distance as:

DA (Xq, Xt) = min
(

D′
A ((xr,xs), (xu,xv)) , D

′
A ((xr,xs), (xv,xu))

)

, (4.4)

where D′
A is the product of the two items’ distances:

D′
A ((xr,xs), (xu,xv)) = dA(xr,xu)× dA(xs,xv). (4.5)

The product reflects that we are looking for pairs where each image is visually

similar to one of those in the novel pair. It also ensures that the constraint pairs

are evaluated for distance as a pair instead of as individual images. The minimum in

Equation 4.4 and the swapping of (xu,xv) → (xv,xu) in the second term ensure that

we account for the unknown ordering of the test pair. When learning a local ranking

function for attribute A, we sort neighbor pairs for Xq according to DA, then take the

top K to form P ′
A.

When identifying neighbor pairs, rather than judge image distance dA by the

usual Euclidean distance on global descriptors, we want to specialize the function to

the particular attribute at hand. That is because often a visual attribute does not rely

equally on each dimension of the feature space, whether due to the features’ locations or

modality. For example, if judging image distance for the attribute smiling, the localized

region by the mouth is likely most important. For fine-grained comparisons, global

similarity alone is insufficient. We need to focus on those that are similar in terms of

the property of interest.

To this end, we learn a Mahalanobis metric:

dA(xi,xj) = (xi − xj)
TMA(xi − xj), (4.6)

parameterized by the d × d positive definite matrix MA. We employ the information-

theoretic metric learning (ITML) algorithm [19], due to its efficiency and kernelizability.

Given an initial d × d matrix MA0
specifying any prior knowledge about how the data

should be compared, ITML produces the MA that minimizes the LogDet divergence
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Dℓd from that initial matrix, subject to constraints that similar data points be close and

dissimilar points be far:

min
MA�0

Dℓd(MA,MA0
) (4.7)

s.t. dA(xi,xj) ≤ c (i, j) ∈ UA

dA(xi,xj) ≥ ℓ (i, j) ∈ VA.

The sets UA and VA consist of pairs of points constrained to be similar and dissimilar,

and ℓ and c are large and small values, respectively, determined by the distribution of

original distances. We set MA0
= Σ−1, the inverse covariance matrix for the training

images. To compose UA and VA, we use image pairs that are human-annotated ac-

cording to each attribute A. While metric learning is usually used to enhance nearest

neighbor classification (e.g., [33, 48]), we employ it to gauge perceived similarity along

an attribute.

Figure 4.3 shows example neighbor pairs. They illustrate how our method finds

training pairs analogous to the test pair, so the learner can isolate the informative

features for that comparison. Note how holistically, the neighbors found with metric

learning (FG-LocalPair) may actually look less similar than those found without (Local-

Pair). However, in terms of the specific attribute, they better isolate the features that

are relevant. For example, images of the same exact person need not be most useful to

predict the degree of smiling, if others better matched to the test pair’s expressions are

available (last example). In practice, the local rankers trained with learned neighbors

are substantially more accurate.

4.3 Evaluation

To validate our method, we compare it to two state-of-the-art methods as well as infor-

mative baselines.

4.3.1 Experimental Setup

Datasets We evaluate on three datasets: our newly curatedUT-Zap50K shoe dataset

Sec. 3.1) and the two existing OSR scene and PubFig face datasets (Sec. 3.3 and 3.4).

The datasets contain 4, 6, and 11 attributes respectively. We use concatenated GIST [110]
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UT-Zap50K (pointy) OSR (open) PubFig (smiling) 

vs. vs. vs. 

FG-LocalPair LocalPair FG-LocalPair LocalPair FG-LocalPair LocalPair 

Figure 4.3: Example fine-grained neighbor pairs for three test pairs (top row) from the datasets tested
in this chapter. We display the top 3 pairs per query. FG-LocalPair and LocalPair denote results with
and without metric learning (ML), respectively. UT-Zap50K (pointy): ML puts the comparison
focus on the tip of the shoe, caring less about the look of the shoe as a whole. OSR (open): ML has
less impact, as openness in these scenes relates to their whole texture. PubFig (smiling): ML learns
to focus on the mouth/lip region instead of the entire face. For example, while the LocalPair retrieves
face pairs that more often contain the same people as the top pair, those instances are nonetheless
less relevant for the fine-grained smiling distinction it requires. In contrast, our FG-LocalPair learned
metric retrieves nearby pairs that may contain different people, yet are instances where the degree of
smiling is most useful as a basis for predicting the relative smiling level in the novel query pair.

and color histogram features for all datasets. For compatibility with prior work, we use

the exact same attributes, features, and train/test splits as [69, 84] for OSR and PubFig.

Specifically, 240 images from each dataset are designated as the training set, after which

the category-level supervision is propagated down to all image instances to form the

respective training/testing pairs. Experiments in Chapter 6 and 7 using deep rankers

explore learned feature representations.

Setup We run for 10 random train/test splits, setting aside 300 ground truth pairs for

testing and the rest for training. We cross-validate C for all experiments, and adopt the

same C selected by the global baseline for our approach. We use no “equal” pairs for

training or testing rankers. We report accuracy in terms of the percentage of correctly

ordered pairs, following [69]. We present results using the same labeled data for all

methods.

For learning to rank, our total training pairs PA consist of only ordered pairs

Po. For ITML, we use the ordered pairs PA for rank training to compose the set of

dissimilar pairs VA, and the set of “equal” pairs to compose the similar pairs UA. We

use the default settings for c and ℓ in the authors’ code [19]. The setting of K determines
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Table 4.1: Results for the UT-Zap50K dataset. FG-LocalPair represents our proposed method, as we
demonstrate the effectiveness of learning from the most analogous neighbors.

Open Pointy Sporty Comfort

Global [84] 87.77 89.37 91.20 89.93

RandPair 82.53 83.70 86.30 84.77

LocalPair 88.53 88.87 92.20 90.90

FG-LocalPair 90.67 90.83 92.67 92.37

(a) UT-Zap50K-1 with coarser pairs.

Open Pointy Sporty Comfort

Global [84] 60.18 59.56 62.70 64.04

RandPair 61.00 53.41 58.26 59.24

LocalPair 71.64 59.56 61.22 59.75

FG-LocalPair 74.91 63.74 64.54 62.51

(b) UT-Zap50K-2 with fine-grained pairs.
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Figure 4.4: Accuracy for the 30 hardest test pairs on UT-Zap50K-1.

“how local” the learner is; its optimal setting depends on the training data and query. As

in prior work [9, 132], we simply fix it for all queries at K = 100 (though see Sec. 4.4 for

a proposed generalization that learns the neighborhood size as well). Values of K = 50

to 200 give similar results.

Baselines We compare the following methods:

• FG-LocalPair: Our proposed fine-grained approach.

• LocalPair: Our approach without the learned metric (i.e., MA = I). This baseline

isolates the impact of tailoring the search for neighboring pairs to the attribute.

• RandPair: A local approach that selects its neighbors randomly. This baseline

demonstrates the importance of selecting relevant neighbors.

• Global: A global ranker trained with all available labeled pairs, using Equa-

tion 4.1. This is the Relative Attributes method [84]. We use the authors’ public

code.

• RelTree: The non-linear relative attributes approach of [69], which learns a hi-

erarchy of functions, each trained with successively smaller subsets of the data.

Code is not available, so we rely on the authors’ reported numbers (available for

OSR and PubFig).
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Figure 4.5: Example pairs contrasting our predictions to the Global baseline’s. In each pair, the top
item is more sporty than the bottom item according to ground truth from human annotators. (1)
We predict correctly, Global is wrong. We detect subtle changes, while Global relies only on overall
shape and color. (2) We predict incorrectly, Global is right. These coarser differences are sufficiently
captured by a global model. (3) Both methods predict incorrectly. Such pairs are so fine-grained, they
are difficult even for humans to make a firm decision.

4.3.2 Zappos Results

Table 4.1a shows the accuracy on UT-Zap50K-1. Our method outperforms all baselines

for all attributes. To isolate the more difficult pairs in UT-Zap50K-1, we sort the test

pairs by their intra-pair distance using the learned metric; those that are close will be

visually similar for the attribute, and hence more challenging. Figure 4.4 shows the

results, plotting cumulative accuracy for the 30 hardest test pairs per split. We see that

our method has substantial gains over the baselines (about 20%), demonstrating its

strong advantage for detecting subtle differences. Figure 4.5 shows qualitative results.

We proceed to test on even more difficult pairs. Whereas Figure 4.4 focuses on

pairs difficult according to the learned metric, next we focus on pairs difficult according

to our human annotators. Table 4.1b shows the results for UT-Zap50K-2. We use the

original ordered pairs for training and all 4,612 fine-grained pairs for testing (Sec. 3.1).

We outperform all methods for three of the four attributes. For the two more objective

attributes, open and pointy, our gains are sizeable—14% over Global for open. We

attribute this to their localized nature, which is accurately captured by our learned

metrics. No matter how fine-grained the difference is, it usually comes down to the top

of the shoe (open) or the tip of the shoe (pointy). On the other hand, the subjective

attributes are much less localized. The most challenging one is comfort, where our

method performs slightly worse than Global, in spite of being better on the coarser pairs

(Table 4.1a). We think this is because the locations of the subtleties vary greatly per

pair.
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Table 4.2: Accuracy comparison for the OSR scenes dataset. FG-LocalPair denotes the proposed
approach.

Natural Open Perspective LgSize Diagonal ClsDepth

RelTree [69] 95.24 92.39 87.58 88.34 89.34 89.54

Global [84] 95.03 90.77 86.73 86.23 86.50 87.53

RandPair 92.97 89.40 84.80 84.67 84.27 85.47

LocalPair 94.63 93.27 88.33 89.40 90.70 89.53

FG-LocalPair 95.70 94.10 90.43 91.10 92.43 90.47

Table 4.3: Accuracy comparison for the PubFig faces dataset.

Male White Young Smiling Chubby Head Brow Eye Nose Lip Face

RelTree [69] 85.33 82.59 84.41 83.36 78.97 88.83 81.84 83.15 80.43 81.87 86.31

Global [84] 81.80 76.97 83.20 79.90 76.27 87.60 79.87 81.67 77.40 79.17 82.33

RandPair 74.43 65.17 74.93 73.57 69.00 84.00 70.90 73.70 66.13 71.77 73.50

LocalPair 81.53 77.13 83.53 82.60 78.70 89.40 80.63 82.40 78.17 79.77 82.13

FG-LocalPair 91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90.43 86.70

4.3.3 Scenes and PubFig Results

We now shift our attention to OSR and PubFig, two commonly used datasets for relative

attributes [59, 69, 84]. As described in Chapter 3, the paired supervision for these

datasets originates from category-wise comparisons [84], and as such there are many

more training pairs—on average over 20,000 per attribute.

Tables 4.2 and 4.3 show the accuracy for OSR and PubFig, respectively. Fig-

ure 4.6 and 4.7 show the individual precision recall curves for all attributes, using

|RA(xi) − RA(xj)| as a measure of confidence. On both datasets, our method out-

performs all the baselines. Most notably, it outperforms RelTree [69], which at the

time of our contribution was the very best accuracy reported on these datasets. This

particular result is compelling not only because we improve the state-of-the-art at the

time, but also because RelTree is a non-linear ranking function. Hence, we see that local

learning with linear models is performing better than global learning with a non-linear

model. With a lower capacity model, but the “right” training examples, the comparison

is better learned. Our advantage over the global Relative Attributes linear model [84] is

even greater.

On OSR, RandPair comes close to Global. One possible cause is the weak su-

pervision from the category-wise constraints. While there are 20,000 pairs, they are

less diverse. Therefore, a random sampling of 100 neighbors seems to reasonably mimic

the performance when using all pairs. In contrast, our method is consistently stronger,
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Figure 4.6: Precision-recall curves for OSR.

showing the value of our learned neighborhood pairs.

While metric learning (ML) is valuable across the board (FG-LocalPair > Lo-

calPair), it has more impact on PubFig than OSR. We attribute this to PubFig’s more

localized attributes. Subtle differences are what makes fine-grained comparison tasks

hard. ML discovers the features behind those subtleties with respect to each attribute.

Those features could be spatially localized regions or particular image cues (GIST vs.

color). Indeed, our biggest gains compared to LocalPair (9% or more) are on white,

where we learn to emphasize color bins, or eye/nose, where we learn to emphasize the

GIST cells for the part regions. In contrast, the LocalPair method compares the face

images as a whole, and is liable to find images of the same person as more relevant,

regardless of their properties in that image (Fig. 4.3).

4.4 Predicting Useful Neighborhoods

As we have seen above, the goal of local learning is to tailor the model to the properties

of the data surrounding the test instance. However, so far, like other prior work in local

learning we have made an important core assumption: that the instances most useful for

building a local model are those that are nearest to the test example. This assumption

is well-motivated by the factors discussed above, in terms of data density and intra-class

variation. Furthermore, as we saw above, identifying training examples solely based on

proximity has the appeal of permitting specialized similarity functions (whether learned
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Figure 4.7: Precision-recall curves for PubFig.

or engineered for the problem domain), which can be valuable for good results, especially

in structured input spaces.

On the other hand, there is a problem with this core assumption. By treating

the individual nearness of training points as a metric of their utility for local training,

existing methods fail to model how those training points will actually be employed.

Namely, the relative success of a locally trained model is a function of the entire set or

distribution of the selected data points—not simply the individual pointwise nearness of

each one against the query. In other words, the ideal target subset consists of a set of

instances that together yield a good predictive model for the test instance. Thus, local

neighborhood selection ought to be considered jointly among training points.

Based on this observation, we explore ways to learn the properties of a “good

neighborhood”.2 We cast the problem in terms of large-scale multi-label classification,

where we learn a mapping from an individual instance to an indicator vector over the

2This section expands on the neighbor selection approach described in Section 4.2.2, briefly summarizing our NIPS
2014 paper [126]. Please see that paper for full details.

35



Testing Training 

 

  

 

= [1, 0, 1, 1, 0, … , 0, 1] 

. . . 

 = [0, 0, 0, 1, 1, … , 1, 0] 

Compressed Label Space ( ) 

  

Reconstruct 

. . . 

 

Figure 4.8: Overview of our compressed sensing based approach for predicting the most optimal neigh-
borhood for learning a local classification model. yn and ŷq represent the M -dimensional neighborhood
indicator vectors for a training and testing instance, respectively. φ is a D ×M random matrix where
D denotes the compressed indicators’ dimensionality. f is the learned regression function used to map
the original image feature space to the compressed label space. By reconstructing back to the full label
space, we get an estimate of ŷq indicating which labeled training instances together will form a good
neighborhood for the test instance xq. This idea was published in NIPS 2014 [126].

entire training set that specifies which instances are jointly useful to the query. The

approach maintains an inherent bias towards neighborhoods that are local, yet makes

it possible to discover subsets that (i) deviate from a strict nearest-neighbor ranking

and (ii) vary in size. We stress that learning what a good neighbor looks like (metric

learning’s goal) is distinct from learning what a good neighborhood looks like (our goal).

Whereas a metric can be trained with pairwise constraints indicating what should be near

or far, jointly predicting the instances that ought to compose a neighborhood requires

a distinct form of learning. The overall pipeline includes three main phases, shown in

Figure 4.8.

4.4.1 Generating Neighborhoods

First, we devise an empirical approach to generate ground truth training neigh-

borhoods (xn,yn) that consist of an individual instance xn paired with a set of training

instance indices capturing its target “neighbors”, the latter being represented as a M-

dimensional indicator vector yn, where M is the number of labeled training instances.

If yn(j) = 1, this means xj appears in the target neighborhood for xn. Otherwise,

yn(j) = 0. We will generate N such pairs, where typically N ≪ M .

As discussed in this chapter, there are good motivations for incorporating nearby

points for local learning. Indeed, we do not intend to eschew the “locality” aspect

of local learning. Rather, we start from the premise that points near to a query are
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likely relevant—but relevance is not necessarily preserved purely by their rank order,

nor must the best local set be within a fixed radius of the query (or have a fixed set

size). Instead, we aim to generalize the locality concept to jointly estimate the members

of a neighborhood such that taken together they are equipped to train an accurate

query-specific model.

4.4.2 Model Learning using Compressed Sensing

Next, we pose the learning task as a large-scale multi-label classification problem.

In multi-label classification, a single data point may have multiple labels. In our case,

rather than predict which labels to associate with a novel example, we want to predict

which training instances belong in its neighborhood. This is exactly what is encoded

by the target indicator vectors defined above, yn. Furthermore, we want to exploit the

fact that, compared to the number of all labeled training images, the most useful local

neighborhoods will contain relatively few examples.

For this task, we adopt the Bayesian compressed sensing approach of [52] into our

framework. With it, we can leverage sparsity in the high-dimensional target neighbor-

hood space to efficiently learn a prediction function that jointly estimates all useful neigh-

bors. To begin, for each of the N training neighborhoods, we project its M-dimensional

neighborhood vector yn to a lower-dimensional space using a random transformation:

zn = φ yn, where φ is a D × M random matrix, and D denotes the compressed indi-

cators’ dimensionality. Then, we learn regression functions to map the original features

to these projected values zn1
, . . . , znN

as targets. That is, we obtain a series of D ≪ M

regression functions f1, . . . , fD minimizing the loss in the compressed indicator vector

space.

4.4.3 Inferring Neighborhoods

Finally, given a test instance xq, those same regression functions are applied to

map to the reduced space, [f1(xq), . . . , fD(xq)]. We predict its complete neighborhood

indicator vector ŷq by recovering the M-dimensional vector using a standard recon-

struction algorithm from the compressed sensing literature. We use this neighborhood

of points to train a classifier on the fly, which in turn is used to categorize xq.
3

3Note that the neighborhood learning idea has been tested thus far only for classification tasks, though in principle
applies similarly to ranking tasks.
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In [126] we show substantial advantages over existing local learning strategies,

particularly when attributes are multi-modal and/or its similar instances are difficult

to match based on global feature distances alone. Our results illustrate the value in

estimating the size and composition of discriminative neighborhoods, rather than relying

on proximity alone. See our NIPS paper for the full details [126].

4.5 Discussion

In this chapter, I proposed a fine-grained local learning-to-rank approach based on analo-

gous training comparisons and attribute-specific metric learning. The proposed approach

demonstrated improvements over the state-of-the-art (at the time of publication) on

three relative attributes datasets from three distinct domains: shoes, faces, and scenes.

Even though the local rankers used only a small subset of the training pairs for learning,

they were able to outperform the existing global models, thus supporting our hypothesis

that learning from the “right” data can be more important than learning from “more”

data.

However, in spite of my initial success with local rankers, there are some overar-

ching challenges thus far unaddressed in this work. Firstly, like all prior work, I have

ignored all test cases where the images are indistinguishable from each other. Equality

prediction is a non-trivial task, as we shall see in Chapter 5, and is especially important

for fine-grained tasks where the differences are subtle. Secondly, the pairwise nature of

the supervision labels means that the space of all possible comparisons scales quadrat-

ically with the total number of images, which soon becomes intractable. Even after

spending over $1000, we have only collected less that 0.1% of all possible comparisons

from our UT-Zap50K dataset. My proposed dense supervision approach from Chap-

ter 6 and 7 addresses this issue indirectly. Thirdly, learning local models on the fly,

though more accurate for fine-grained attributes, does come at a higher computational

cost during runtime. However, there are straightforward ways to improve the run-time.

For example, we could cluster the training pairs, build a local model for each cluster,

and invoke the suitable model based on a test pair’s similarity to the cluster representa-

tives. Lastly, due to the model’s reliance on analogous neighboring pairs, predictions on

sparsely populated regions would perform poorly due to the lack of quality neighbors.
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Chapter 5

Just Noticeable Attribute Differences

Having established the strength of local learning for fine-grained attribute comparisons,

we now turn to task of predicting when a comparison is even possible. While some pairs

of images have a clear ordering for an attribute (recall Fig. 1.2), for others the difference

may be indistinguishable to human observers. Attempting to map relative attribute

ranks to equality predictions is non-trivial, particularly since the span of indistinguish-

able pairs in an attribute space may vary in different parts of the feature space. In

fact, as discussed above, despite the occasional use of unordered pairs for training1, it is

assumed in prior work that all test images will be orderable. However, the real-valued

output of a ranking function as trained in Section 4.1.1 will virtually never be equal

for two distinct inputs. Therefore, even though existing methods may learn to produce

similar rank scores, it is unclear how to determine when a novel pair is “close enough”

to be considered un-orderable.

We argue that this situation calls for a model of just noticeable difference among

attributes. Just noticeable difference (JND) is a concept from psychophysics. It refers

to the amount a stimulus has to be changed in order for it to be detectable by human

observers at least half the time. For example, JND is of interest in color perception

(which light sources are perceived as the same color?) and image quality assessment (up

to what level of compression do the images look ok?). JNDs are determined empirically

through tests of human perception. For example, JND in color can be determined by

gradually altering the light source just until the human subject detects that the color

has changed [31]. For this work, we borrow the JND term here as a loose analogy to the

fine-grained problem we have on-hand.

Why is it challenging to develop a computational model of JND for relative

attributes? At a glance, one might think it amounts to learning an optimal threshold

on the difference of predicted attribute strengths. However, this begs the question of

1Empirically, we found the inclusion of unordered pairs during training in [84] to have negligible impact at test time.
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Smiling 

Figure 5.1: Analogous to the MacAdam ellipses in the CIE x,y color space (right) [31], relative at-
tribute space is likely not uniform (left). That is, the regions within which attribute differences are
indistinguishable may vary in size and orientation across the high-dimensional visual feature space.
Here we see the faces within each “equally smiling” cluster exhibit varying qualities for differentiating
smiles—such as age, gender, and visibility of the teeth—but are still difficult or impossible to order in
terms of smiling-ness. As a result, simple metrics and thresholds on attribute differences are insufficient
to detect subtle differences, as we will see in Section 5.2.2.

how one might properly and densely sample real images of a complex attribute (like

seriousness) to gradually walk along the spectrum, so as to discover the right threshold

with human input. More importantly, an attribute space need not be uniform. That is,

depending on where we look in the feature space, the magnitude of attribute difference

required to register a perceptible change may vary. Therefore, the simplistic “global

threshold” idea falls short. Analogous issues also arise in color spaces, e.g., the famous

MacAdam ellipses spanning indistinguishable colors in the CIE x,y color space vary

markedly in their size and orientation depending on where in the feature space one

looks (leading to the crafting of color spaces like CIE Lab that are more uniform). See

Figure 5.1.

In this chapter, we introduce a solution to infer when two images are indistin-

guishable for a given attribute. Continuing with the theme of local learning, we develop

a Bayesian approach that relies on local statistics of orderability. First, we construct a

predicted attribute space using the standard RankSVM framework (Sec. 4.1.1). Then,

on top of that model, we combine a likelihood computed in the predicted attribute space

(Sec. 5.1.2) with a local prior computed in the original image feature space (Sec. 5.1.3).
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We show our approach’s superior performance compared to various baselines for de-

tecting noticeable differences, as well as demonstrate how attribute JND has potential

benefits for an image search application (Sec. 5.2).

The work in this chapter was published in ICCV 2015 [127] and a book chap-

ter [124].

5.1 Approach

The most straightforward approach to infer whether a novel image pair is distinguishable

would be to impose a threshold on their rank differences, i.e., to predict “indistinguish-

able” if |RA(xr)−RA(xs)| ≤ ǫ. The problem is that unless the rank space is uniform, a

global threshold ǫ is inadequate. In other words, the rank margin for indistinguishable

pairs need not be constant across the entire feature space. By testing multiple variants

of this basic idea, our empirical results confirm this is indeed an issue, as we will see in

Section 5.2.

Our key insight is to formulate distinguishability prediction in a probabilistic,

local learning manner. Mindful of the non-uniformity of relative attribute space, our

approach uses distributions tailored to the data in the proximity of a novel test pair.

Furthermore, we treat the relative attribute ranks as an imperfect mid-level represen-

tation on top of which we can learn to target the actual (sparse) human judgments

about distinguishability. Our approach leverages both a low-level visual descriptor space,

within which image pair proximity is learned, as well as a mid-level visual attribute space,

within which attribute distinguishability is represented (Fig. 5.2). Whereas past ranking

models have attempted to integrate equality into training, none attempt to distinguish

between orderable and un-orderable pairs at test time.

5.1.1 Local Bayesian Model of Distinguishability

Let D ∈ {0, 1} be a binary random variable representing the distinguishability of an

image pair. For a distinguishable pair, D = 1. Given a novel test pair (xr,xs), we are

interested in the posterior:

P (D|xr,xs) ∝ P (xr,xs|D)P (D), (5.1)

to estimate how likely two images are distinguishable. To make a hard decision we take
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Figure 5.2: Overview of our Bayesian approach. (1) Learn a ranking function RA using all annotated
training pairs. (2) Estimate the likelihood densities of the equal and ordered pairs, respectively, using
the pairwise distances in relative attribute space. (3) Determine the local prior by counting the labels
of the analogous pairs in the image descriptor space. (4) Combine the results to predict whether the
novel pair is distinguishable (not depicted). Best viewed on PDF.

the maximum a posteriori estimate over the two classes:

d∗ = argmax
d

P (D = d|xr,xs). (5.2)

At test time, our method performs a two-stage cascade. If the test pair appears

distinguishable, we return the response “more” or “less” according to whether RA(xr) <

RA(xs) (where R is trained in either a global or local manner). Otherwise, we say the test

pair is indistinguishable. In this way we unify relative attributes with JND, generating

partially ordered predictions in spite of the ranker’s inherent totally ordered outputs.

Next, we derive models for the likelihood and prior in Equation 5.1, accounting

for the challenges described above.

5.1.2 The Likelihood Model

We use a kernel density estimator (KDE) to represent the distinguishability likelihood

over image pairs. The likelihood captures the link between the observed rank differences

and the human-judged just noticeable differences.

Let ∆r,s denote the difference in attribute ranks for images r and s:

∆r,s = |RA(xr)−RA(xs)|. (5.3)

Recall that Po and Pe refer to the sets of ordered and equal training image pairs, re-

spectively. We compute the rank differences for all training pairs in Po and Pe, and fit

a non-parametric Parzen density:
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P (xr,xs|D) =
1

|P|

∑

i,j∈P

Kh (∆i,j −∆r,s) , (5.4)

for each set in turn. Here P refers to the ordered pairs Po when representing distin-

guishability (D = 1), and the equal pairs Pe when representing indistinguishability

(D = 0). The Parzen density estimator [86] superimposes a kernel function Kh at each

data pair. In our implementation, we use Gaussian kernels. It integrates local esti-

mates of the distribution and resists overfitting. The KDE has a smoothing parameter

h that controls the model complexity. To ensure that all density is contained within the

positive absolute margins, we apply a positive support to the estimator. Namely, we

transform ∆i,j using a log function, estimate the density of the transformed values, and

then transform back to the original scale. See (2) in Figure 5.2.

The likelihood reflects how well the equal and ordered pairs are separated in the

attribute space. However, critically, P (xr,xs|D = 1) need not decrease monotonically

as a function of rank differences. In other words, the model permits returning a higher

likelihood for certain pairs separated by smaller margins. This is a direct consequence

of our choice of the non-parametric KDE, which preserves local models of the original

training data. This is valuable for our problem setting because in principle it means

our method can correct imperfections in the original learned ranks and account for the

non-uniformity of the space.

5.1.3 The Prior Model

Finally, we need to represent the prior over distinguishability. The prior could simply

count the training pairs, i.e., let P (D = 1) be the fraction of all training pairs that were

distinguishable. However, we again aim to account for the non-uniformity of the visual

feature space. Thus, we estimate the prior based only on a subset of data near the input

images. Intuitively, this achieves a simple prior for the label distribution in multiple

pockets of the feature space:

P (D = 1) =
1

K
|P ′

o|, (5.5)

where P ′
o ⊂ Po denotes the set of K neighboring ordered training pairs. P (D = 0) is

defined similarly for the indistinguishable pairs Pe. Note that while the likelihood is
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computed over the pair’s rank difference, the locality of the prior is with respect to the

image descriptor space. See (3) in Figure 5.2.

To localize the relevant pocket of the image space, we adopt the metric learning

strategy detailed in Section 4.2.2. Using the learned metric, pairs analogous to the

novel input (xr,xs) are retrieved based on a product of their individual Mahalanobis

distances, so as to find pairs whose members both align.

5.2 Evaluation

We present results on the core JND detection task (Sect. 5.2.2) on two challenging

datasets and demonstrate its impact for an image search application (Sect. 5.2.3).

5.2.1 Experimental Setup

Datasets and Ground Truth Our task requires attribute datasets that (1) have

instance-level supervision, meaning annotators were asked to judge attribute compar-

isons on individual pairs of images, not object categories as a whole, and (2) have pairs

labeled as “equal” and “more/less”. To train and evaluate just noticeable differences, we

must have annotations of utmost precision. Therefore, we take extra care in establishing

the (in)distinguishable ground truth for both datasets. For the following experiments,

we use the high quality labels UT-Zap50K-EQ and LFW-10-EQ described in Sec-

tions 3.1 and 3.3 for the shoe and face domains respectively. Recall that these datasets

have not only ordered pairs Po but also equal pairs Pe.

Baselines We are the first to address the attribute JND task. No prior methods infer

indistinguishability at test time [58, 69, 84, 95, 96]. Therefore, we develop multiple

baselines to compare to our approach:

• Rank Margin: Use the magnitude of ∆r,s as a confidence measure that the pair

r, s is distinguishable. This baseline assumes the learned rank function produces

a uniform feature space, such that a global threshold on rank margins would be

sufficient to identify indistinguishable pairs. To compute a hard decision for this

method (for F1-scores), we threshold the Parzen window likelihood estimated from

the training pairs by ǫ, the mid-point of the likelihood means.
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Figure 5.3: Just noticeable difference detection accuracy for all attributes. We show the precision-recall
(left two) and ROC curves (right two) for the shoes (UT-Zap50k) and faces (LFW-10) datasets. Legends
show AUC values for ROC curves. Note that the Mean Shift baseline does not appear here, since it
does not produce confidence values.

• Logistic Classifier [58]: Train a logistic regression classifier to distinguish train-

ing pairs in Po from those in Pe, where the pairs are represented by their rank

differences ∆i,j. To compute a hard decision, we threshold the posterior at 0.5.

This is the method used in [58] to obtain a probabilistic measure of attribute

equality. It is the closest attempt we can find in the literature to represent equal-

ity predictions, though the authors do not evaluate its accuracy. This baseline also

maintains a global view of attribute space.

• SVM Classifier: Train a nonlinear SVM classifier with a RBF kernel to dis-

tinguish ordered and equal pairs. We encode pairs of images as single points by

concatenating their image descriptors. To ensure symmetry, we include training

instances with the two images in either order.2

• Mean Shift: Perform mean shift clustering on the predicted attribute scores

RA(xi) for all training images. Images falling in the same cluster are deemed

indistinguishable. Since mean shift clusters can vary in size, this baseline does not

assume a uniform space. Unlike our method, it fails to leverage distinguishability

supervision as it processes the ranker outputs.

Implementation Details For UT-Zap50K, just like in Section 4.3.1, we use 960-dim

GIST and 30-bin Lab color histograms as image descriptors. For LFW-10, they are 8,300-

dim part-based features learned on top of dense SIFT bag of words features (provided by

2We also implemented other encoding variants, such as taking the difference of the image descriptors or using the
predicted attribute scores RA(xi) as features, and they performed similarly or worse.
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Table 5.1: JND detection on UT-Zap50K (F1 scores).

Open Pointy Sporty Comfort All Attributes

Margin 48.95 67.48 66.93 57.09 60.11 ± 1.89

Logistic 10.49 62.95 63.04 45.76 45.56 ± 4.13

SVM 48.82 50.97 47.60 40.12 46.88 ± 5.73

Mean Shift 54.14 58.23 60.76 61.60 58.68 ± 8.01

Ours 62.02 69.45 68.89 54.63 63.75 ± 3.02

Table 5.2: JND detection on LFW-10 (F1 scores). NaN occurs when recall=0 and precision=inf.

Bald Hair Eyes Look Masc. Mouth Smile Teeth Head Young
All

Attributes

Margin 71.10 55.81 74.16 61.36 82.38 62.89 60.56 65.26 67.49 34.20 63.52 ± 2.67

Logistic 75.77 53.26 86.71 64.27 87.29 63.41 59.66 64.83 75.00 NaN 63.02 ± 1.84

SVM 79.06 32.43 89.70 70.98 87.35 70.27 55.01 39.09 79.74 NaN 60.36 ± 9.81

Mean Shift 66.37 56.69 54.50 51.29 69.73 68.38 61.34 65.73 73.99 23.19 59.12 ± 10.51

Ours 81.75 69.03 89.59 75.79 89.86 72.69 73.30 74.80 80.49 32.89 74.02 ± 1.66

the authors). We reduce their dimensionality to 100 with PCA to prevent overfitting.

The part-based features [96] isolate localized regions of the face (e.g., exposing cues

specific to the eyes vs. hair). We experimented with both linear and RBF kernels for RA.

Since initial results were similar, we use linear kernels for efficiency. We use Gaussian

kernels for the Parzen windows. We set all hyperparameters (h for the KDE, bandwidth

for Mean Shift, K for the prior) on held-out validation data. To maximize the use of

training data, in all results below, we use leave-one-out evaluation and report results

over 4 folds of random training-validation splits.

5.2.2 Just Noticeable Difference Detection

We evaluate just noticeable difference detection accuracy for all methods on both datasets.

Figure 5.3 shows the precision-recall curves and ROC curves, where we pool the results

from all 4 and 10 attributes in UT-Zap50K and LFW-10, respectively. Tables 5.1 and

5.2 report the summary F1-scores and standard deviations for each individual attribute.

The F1-score is a useful summary statistic for our data due to the unbalanced nature of

the test set: 25% of the shoe pairs and 80% of the face pairs are indistinguishable for

some attribute.

Overall, our method outperforms all baselines. We obtain sizeable gains—roughly

4-18% on UT-Zap50K and 10-15% on LFW-10. This clearly demonstrates the advan-

tages of our local learning approach, which accounts for the non-uniformity of attribute
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Figure 5.4: Example predictions. The top four rows are pairs our method correctly classifies as indistin-
guishable (left panel) and distinguishable (right panel), whereas the Rank Margin baseline fails. Each
row shows pairs for a particular attribute. The bottom row shows failure cases by our method; i.e., the
bottom left pair is indistinguishable for pointiness, but we predict distinguishable.

space. The “global approaches”, Rank Margin and Logistic Classifier, reveal that a uni-

form mapping of the relative attribute predictions is insufficient. In spite of the fact that

they include equal pairs during training, simply assigning similar scores to indistinguish-

able pairs is inadequate. Their weakness is likely due both to noise in those mid-level

predictions as well as the existence of JND regions that vary in scale. Furthermore,

the results show that even for challenging, realistic image data, we can identify just

noticeable differences at a high precision and recall, up to nearly 90% in some cases.

The SVM baseline is much weaker than our approach, indicating that discrimi-

natively learning what indistinguishable image pairs look like is insufficient. This result

underscores the difficulty of learning subtle differences in a high-dimensional image de-

scriptor space, and supports our use of the compact rank space for our likelihood model.

Looking at the per-attribute results (Tables 5.1 and 5.2), we see that our method also

outperforms the Mean Shift baseline. While Mean Shift captures dominant clusters in

the spectrum of predicted attribute ranks for certain attributes, for others (like pointy or

masculine) we find that the distribution of output predictions are more evenly spread.

Despite the fact that the rankers are optimized to minimize margins for equal pairs,

simple post-processing of their outputs is inadequate.

Figure 5.4 shows qualitative prediction examples. Here we see the subtleties of
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Figure 5.5: Example just noticeable differences. In each row, we take leftmost image as a starting
point, then walk through nearest neighbors in relative attribute space until we hit an image that is
distinguishable, as predicted by our method. For example, in row 2, our method finds the left block of
images to be indistinguishable for sportiness ; it flags the transition from the flat dress shoe to the pink
“loafer-like sneaker” as being a noticeable difference.

JND. Whereas past methods would be artificially forced to make a comparison for the

left panel of image pairs, our method declares them indistinguishable. Pairs may look

very different overall (e.g., different hair, race, headgear) yet still be indistinguishable

in the context of a specific attribute. Meanwhile, those that are distinguishable (right

panel) may have only subtle differences.

Figure 5.5 illustrates examples of just noticeable difference “trajectories” com-

puted by our method. We see how our method can correctly predict that various in-

stances are indistinguishable, even though the raw images can be quite diverse (e.g., a

strappy sandal and a flat dress shoe are equally sporty). Similarly, it can detect a differ-

ence even when the image pair is fairly similar (e.g., a lace-up sneaker and smooth-front

sneaker are distinguishable for openness even though the shapes are close).

Figures 5.6 and 5.7 display 2D t-SNE [72] embeddings for a subset of 5,000 shoe

images based on the original image feature space and our learned attribute space for the

attribute pointy. To compute the embeddings for our method, we represent each image

xi by its posterior probabilities of being indistinguishable to every other image. i.e.

v(xi) = [P (D = 0|xi,x1), P (D = 0|xi,x2), ..., P (D = 0|xi,xN)] where N is the total

number of images in the embedding. We see that while the former produces a rather

evenly distributed mapping without distinct structures, the latter produces a mapping

containing unique structures along with “pockets” of indistinguishable images. Such

structures precisely reflect the non-uniformity we anticipated in Figure 5.1.

5.2.3 Image Search Application

Finally, we demonstrate how JND detection can enhance an image search application.

Specifically, we incorporate our model into the WhittleSearch framework of Kovashka
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Figure 5.6: t-SNE visualization of the original feature space. See Figure 5.7 for the visualization of our
learned attribute space. Best viewed on PDF.
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Figure 5.7: t-SNE visualization of our learned attribute space for the attribute pointy. Shoes with a
similar level of pointiness are placed closer together in our learned space, forming loose “pockets” of
indistinguishability. Best viewed on PDF.

50



“Something similarly streamlined like this!”

Figure 5.8: The modified WhittleSearch framework. The user can now express an “equality” feedback,
speeding up the process of finding his envisioned target.

et al. [59]. WhittleSearch is an interactive method that allows a user to provide relative

attribute feedback, e.g., by telling the system that he wants images “more sporty” than

some reference image. The method works by intersecting the relative attribute con-

straints, scoring database images by how many constraints they satisfy, then displaying

the top scoring images for the user to review. See [59] for details.

We augment that pipeline such that the user can express not only “more/less”

preferences, but also “equal” preferences (Fig. 5.8). For example, the user can now say,

“I want images that are equally sporty as image x.” Intuitively, enriching the feedback

in this manner should help the user more quickly zero in on relevant images that match

his envisioned target. To test this idea, we mimic the method and experimental setup

of [59] as closely as possible, including their feedback generation simulator.

We evaluate a proof-of-concept experiment on UT-Zap50K, which is large enough

to allow us to sequester disjoint data splits for training our method and performing the

searches (LFW-10 is too small). We select 200 images at random to serve as the mental

targets a user wants to find in the database, and reserve 5,000 images for the database.

The user is shown 16 reference images and expresses 8 feedback constraints per iteration.

Figure 5.9 shows the results. Following [59], we measure the relevance rank of the

target as a function of feedback iterations (left, lower is better), as well as the similarity

of all top-ranked results compared to the target (right, higher is better). We see that

JNDs substantially bolster the search task. In short, the user gets to the target in

fewer iterations because he has a more complete way to express his preferences—and

the system understands what “equally” means in terms of attribute perception.
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Figure 5.9: Image search results. We enhance an existing relative attribute search technique called
WhittleSearch [59] with our JND detection model. The resulting system finds target images more
quickly (left) and produces a better overall ranking of the database images (right).

5.3 Discussion

In this chapter, I explored the task of identifying perceivable differences between two

highly similar images, with respect to a given attribute. Motivated by my local learning

approach in Chapter 4, I proposed a Bayesian prediction model that leverages the local

statistics of orderability to distinguish JNDs in attributes. Aside from being the first

to address this issue of “equality” in a fine-grained comparison setting, I was also able

to demonstrate the effectiveness of my proposed local probabilistic model over multiple

alternative strategies in two distinct domains.

With that said, one potential weakness of our approach is its reliance on the

large-margin ranker RA as the intermediate representations of the individual images,

which are used to compute the likelihood and the prior terms. As we saw in Chapter 4,

the standard large-margin ranker is not perfect and a poorly trained initial RA could

harm all subsequent computations. Furthermore, just like our local learning approach,

whenever the local model is used for RA, the computation cost at runtime could become

unscalable as the number of training pairs increases.

Finally, one major issue that I encountered was the lack of relevant neighbors

around sparsely supervised regions in the attribute space. Such a scenario would severely

hinder the effectiveness of the approach since the closest neighbors are no longer rep-

resentative of the actual local statistics. The underlying issue is that unlike in a true

JND experiment from psychophysics, where for example, a light source can be system-

atically adjusted until the human detects a change, we do not have such fine control
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over our training data. However, as we will see in Chapter 6 and 7, this is an issue that

a generative model has the potential to address.
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Chapter 6

Dense Supervision Through Semantic Jitter

Having discussed the algorithmic improvements over the last two chapters using local

learning, we now look at an orthogonal issue of the sparsity of supervision for fine-

grained comparisons. The sparsity of supervision problem consists of two areas: label

availability and image availability.

Due to the pairwise nature of the supervision labels, the space of all possible com-

parisons is quadratic in the number of potential training images. This quickly makes

it intractable to label an image collection exhaustively for its comparative properties.

Furthermore, attribute comparisons also entail a greater cognitive load than, for ex-

ample, object category labeling. Even for our UT-Zap50K dataset (Secs. 3.1 and 3.2),

which is already the largest existing relative attribute dataset, only less than 0.1% of

all possible comparisons have been labeled. The fact is that there is a major size gap

between standard datasets labeled for classification (now in the millions [21]) and those

for comparisons (at best in the thousands). A popular shortcut is to propagate category-

level comparisons down to image instances [8, 84]—e.g., deem all ocean scenes as “more

open” than all forest scenes—but this introduces substantial label noise and in practice

underperforms training with instance-level comparisons [60].

Meanwhile, another parallel issue more insidious than the annotation cost is

the problem of even curating training images that sufficiently illustrate fine-grained

differences. Critically, sparse supervision arises not only because we lack resources to

get enough image pairs labeled, but also because we lack a direct way to curate photos

demonstrating all sorts of subtle attribute changes. In other words, the “right” data

for fine-grained learning might not even be available in the existing training data. For

example, how might we gather unlabeled image pairs depicting all subtle differences in

“sportiness” in clothing images or “surprisedness” in faces? As a result, even today’s

best datasets contain only partial representations of an attribute.

In this chapter, I propose an approach to “densify” supervision for fine-grained

comparison tasks by leveraging synthetic images sampled from an attribute-conditioned
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Figure 6.1: Our method “densifies” supervision for training ranking functions to make visual compar-
isons, by generating ordered pairs of synthetic images. Here, when learning the attribute smiling, real
training images need not be representative of the entire attribute space (e.g., web photos may cluster
around commonly photographed expressions, like toothy smiles). Our idea “fills in” the sparsely sam-
pled regions to enable fine-grained supervision. Given a novel pair (top), the nearest synthetic pairs
(right) may present better training data than the nearest real pairs (left).

generative model. These semantically jittered synthetic pairs can be used independently

or in conjunction with existing image pairs. First, we describe the generative model

(Sec. 6.1.1) and how we elicit dense supervision pairs from it (Sec. 6.1.2). Then, we

integrate synthetic and real images to train rankers for attribute comparisons (Sec. 6.2).

Lastly, to demonstrate our approach’s versatility, in experiments we explore both suc-

cessful learning-to-rank models from the attributes literature previewed in Section 4.1

(Sec. 6.1.3).

The work in this chapter was published in ICCV 2017 [128].

6.1 Approach

The key to improving coverage in the attribute space is the ability to generate images

exhibiting subtle differences—with respect to the given attribute—while keeping the

others constant. In other words, we want to walk semantically in the high-level attribute

space (Fig. 6.1).
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more lessSmiling

more lessSupportive

more lessOpen

Figure 6.2: Spectra of generated images given an identity and an attribute. We form two types of
image pairs: The two solid boxes represent an intra-identity pair, whereas the two red boxes represent
an inter-identity pair.

6.1.1 Attribute-Conditioned Image Generator

We adopt an existing state-of-the-art image generation system, Attribute2Image

(Attr2Img), recently introduced by Yan et al. [118, 119], which can generate images

that exhibit a given set of attributes and latent factors.

Suppose we have a lexicon of Na attributes, {A1, . . . ,ANa
}. Let y ∈ R

Na be a

vector containing the strength of each attribute, and let z ∈ R
Nz be the latent variables.

The Attr2Img approach constructs a generative model for pθ(x|y, z) that produces re-

alistic images x ∈ R
Nx conditioned on y and z. The authors maximize the variational

lower bound of the log-likelihood log pθ(x|y) in order to obtain the model parameters

θ. The model is implemented with a Conditional Variational Auto-Encoder (CVAE).

The network architecture generates the entangled hidden representation of the attributes

and latent factors with multilayer perceptrons, then generates the image pixels with a

coarse-to-fine convolutional decoder. The authors apply their approach for attribute

progression, image completion, and image retrieval. See [118, 119] for more details.1

1We use the original model rather than the variant disCVAE [118] since the latter requires additional supervision in
the form of foreground object masks.
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6.1.2 Generating Dense Synthetic Image Pairs

We propose to leverage the Attr2Img [118] engine to supply realistic synthetic training

images that “fill in” under-represented regions of image space, which we show helps train

a model to infer attribute comparisons.

The next key step is to generate a series of synthetic identities, then sample

images for those identities that are close by in a desired semantic attribute space.2 The

resulting images will comprise a set of synthetic image pairs SA. We explore two cases

for using the generated pairs: one where their putative ordering is verified by human

annotators, and another where the ordering implied by the generation engine is taken

as their (noisy) label. Section 6.1.3 describes how we use the hybrid real and synthetic

image pairs to train specific attribute predictors.

Each identity is defined by an entangled set of latent factors and attributes. Let

p(y) denote a prior over the attribute occurrences in the domain of interest. We model

this prior with a multivariate Gaussian whose mean and covariance are learned from the

attribute strengths observed in real training images: p(y) = N (µ,Σ). This distribution

captures the joint interactions between attributes, such that a sample from the prior

reflects the co-occurrence behavior of different pairs of attributes (e.g., shoes that are

very pointy are often also uncomfortable, faces that have facial hair are often masculine,

etc.).3 The prior over latent factors p(z), captures all non-attribute properties like pose,

background, and illumination. Following [119], we represent p(z) with an isotropic

multivariate Gaussian.

To sample an identity

Ij = (yj, zj) (6.1)

we sample yj and zj from their respective priors. Then, using an Attr2Img model trained

for the domain of interest, we sample from pθ(x|yj, zj) to generate an image x̂j ∈ R
Nx

for this identity. Alternatively, we could sample an identity from a single real image,

2Note that here the word “identity” means an instance for some domain, not necessarily a human identity; in experi-
ments we apply our idea both for human faces as well as fashion images of shoes.

3Note that this prior is nonetheless assumed to be coarse, since a subset of dimensions in y consist of the very
attributes we wish to learn better via densifying supervision. For the sake of the prior, the training image attribute
strengths originate from the raw decision outputs of a preliminary binary attribute classifier trained on disjoint data
labeled for the presence/absence of the attribute (see Sec. 6.2.1).
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after inferring its latent variables through the generative model [122]. However, doing

so requires having access to attribute labels for that image.

Next we modify the strength of a single attribute in y while keeping all other

variables constant. This yields two “tweaked” identities I(−)
j and I(+)

j that look much

like Ij , only with a bit less or more of the attribute, respectively. Specifically, let σA

denote the standard deviation of attribute scores observed in real training images for

attribute A. We revise the attribute vector for identity Ij by replacing the dimension

for attribute A according to

y
(−)
j (A) = yj(A)− 2σA and

y
(+)
j (A) = yj(A) + 2σA, (6.2)

and y
(−)
j (a) = y

(+)
j (a) = yj(a), ∀a 6= A. Finally, we sample from pθ(x|y

(−)
j , zj) and

pθ(x|y
(+)
j , zj) to obtain images x̂

(−)
j and x̂

(+)
j . Recall that our identity sampling accounts

for inter-attribute co-occurrences. Slightly altering a single attribute is in line with our

goal to densify supervision and recovers plausible but yet-unseen instances.

Figure 6.2 shows examples of synthetic images generated for a sampled identity,

varying only in one attribute. The generated images form a smooth progression in the

attribute space. This is exactly what allows us to curate fine-grained pairs of images

that are very similar in attribute strength. Crucially, such pairs are rarely possible to

curate systematically among real images. The exception is special “hands-on” scenarios,

e.g., for faces, asking subjects in a lab to slowly exhibit different facial expressions, or

systematically varying lighting or head pose (cf. PIE, Yale face datasets). The hands-on

protocol is not only expensive, it is inapplicable in most domains outside of faces and

for rich attribute vocabularies. Furthermore, the generation process allows us to collect

in a controlled manner subtle visual changes across identities as well.

Next we pair up the synthetic images to form the set SA, which, once (optionally)

verified and pruned by human annotators, will augment the real training image pairs

PA. In order to maximize our coverage of the attribute space, we sample two types

of synthetic image pairs: intra-identity pairs, which are images sampled from the same

identity’s spectrum and inter-identity pairs, which are images sampled from different

spectrums (Fig. 6.2).

We expect many of the generated pairs to be valid, meaning that both images

are realistic and that the pair exhibits a slight difference in the attribute of interest.
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Figure 6.3: Synthetic image pairs generated by our semantic jitter approach (top), including some
failure cases where the generator failed to synthesize realistic looking images (bottom). Here “valid”
vs. “invalid” is as judged by five human annotators.

However, this need not always be true. In some cases the generator will create images

that do not appear to manipulate the attribute of interest, or where the pair is close

enough in the attribute to be indistinguishable, or where the images simply do not look

realistic enough to tell (Fig. 6.3). Our experiments indicate this happens about 15% of

the time.

To correct erroneous pairs, we collect order labels from 5 crowdworkers per pair.

However, while human-verified pairs are most trustworthy for a learning algorithm, we

suspect that even noisy (unverified) pairs could be beneficial too, provided the learning

algorithm (1) has high enough capacity to accept a lot of them and/or (2) is label-

noise resistant. Unverified pairs are attractive because they are free to generate in mass

quantities. We examine both cases below.

6.1.3 Learning to Rank with Hybrid Comparisons

In principle any learning algorithm for visual comparisons could exploit the newly gener-

ated synthetic image pairs. We consider two common ones from the attribute literature:

RankSVMs with local learning (from Chap. 4) and a deep Siamese RankNet with a spa-

tial transformer network (STN), which build upon the basic deep learning formulation

overviewed in Section 4.1.2.
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Figure 6.4: Examples of nearest neighbor image pairs given novel test pairs (left). Both real and
synthetic image pairs appear in the top neighbors, suggesting their combined importance in the local
learning algorithm.

RankSVM+Local Learning We employ RankSVM with a local learning model,

exactly as we did in Chapter 4. Given a hybrid set of sparse real pairs and dense

synthetic pairs, {PA

⋃

SA}, we use a local model to select the most relevant mix of real

and synthetic pairs (Fig. 6.4). Just as bare bones nearest neighbors relies on adequate

density of labeled exemplars to succeed, in general local learning is expected to flourish

when the space of training examples is more densely populated. Thus, local learning is

congruent with our hypothesis that data density is at least as important as data quantity

for learning subtle differences (Fig. 6.1).

DeepCNN+Spatial Transformer Our choice for the second ranker is motivated

both by its leading empirical performance [107] as well as its high capacity, which makes

it data hungry. This deep learning to rank method combines a CNN optimized for a

paired ranking loss [12] (briefly described in Sec. 4.1.2) together with a spatial trans-

former network (STN) [47]. In particular,

R
(cnn)
A (φ(x)) = RankNetA(STN(φ(x))), (6.3)

where RankNet denotes a Siamese network with duplicate stacks. During training these

stacks process ordered pairs, learning filters that map the images to scalars that preserve

the desired orderings in PA. The STN is trained simultaneously to discover the localized

patch per image that is most useful for ranking the given attribute (e.g., it may focus on
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the mouth for smiling). Given a single novel image, either stack can be used to assign

a ranking score. See [107] for details. As above, our approach trains this CNN with all

pairs in {PA

⋃

SA}.

Generator vs. Ranker A natural question to ask is why not feed back the synthetic

image pairs into the same generative model that produced them, to try and enhance

its training? We avoid doing so for two important reasons. First, this would lead to a

circularity bias where the system would essentially be trying to exploit new data that

it has already learned to capture well (and hence could generate already). Second, the

particular image generator we employ is not equipped to learn from relative supervision

nor make relative comparisons on novel data. Rather, it learns from individual images

with absolute attribute strengths. Thus, we use the synthetic data to train a distinct

model capable of learning relative visual concepts.

Curating Images vs. Supervision While traditional data collection methods lack

a direct way to curate image pairs covering the full space of attribute variations, our

approach addresses exactly this sparsity. It densifies the attribute space via plausible

synthetic images that venture into potentially undersampled regions of the attribute

spectra. Our approach does not expect to get “something for nothing”. Indeed, the

synthesized examples are still annotated by humans. The idea is to expose the learner

to realistic images that are critical for fine-grained visual learning yet difficult to attain

in traditional data collection pipelines.

6.2 Evaluation

We conduct fine-grained visual comparison experiments to validate the benefit of our

dense supervision idea, for both rankers described in Section 6.1.3.

6.2.1 Experimental Setup

Datasets Our experiments rely on the following existing and newly collected datasets.

• Zap50K+New Lexicon: Our improved UT-Zap50K dataset from Section 3.2.
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• Zap50K-Synth: A new synthetic shoe dataset with pairwise labels on the new

10-attribute lexicon. We train the generative model using a subset of UT-Zap50K

and a superset of the above attributes. We generate 1,000 identities and each one

is used to sample both an intra- and inter-identity pair, yielding ∼2,000 pair labels

per attribute. The synthetic images are 64× 64 pixels.

• LFW-10: Original LFW-10 dataset as described in Section 3.3.

• PFSmile: A small set of faces images also described in Section 3.3, which is

exclusively used for evaluation on the face images.

• LFW-Synth: A new synthetic face dataset with pairwise labels on the attribute

smiling. We train the generative model on a subset of LFW images and the 73

attributes from [63, 118]. We generate 2,000 identities and sample a total of 4,000

intra pairs and 1,000 inter pairs. The synthetic images are 35 × 35 pixels, after

zooming to a tight bounding box around the face region.

Implementation Details For synthesis, we use the code shared by the authors for

the Attr2Img system [118], with all default parameters. Since we inherit the generator’s

64 × 64 output image resolution, for apples-to-apples comparison, we downsize real

images to match the resolution of the synthetic ones. Early experiments showed that

a mix of inter and intra-identity pairs was most effective, so we use a 50-50 mix in all

experiments. For RankSVM, we use Gist [110] and 30-bin Lab color histograms as the

image features φ, following [84, 125]4, and validate K per method on held-out data. For

DeepSTN, we use training parameters provided in [107] per dataset. The images used

to train the generative model, to train the ranking functions, and to evaluate (test set)

are kept strictly disjoint.

Baselines We compare the following methods:

• Real: Training pool consists of only real image pairs, labeled by human annotators.

• Jitter: Uses the same real training pairs, but augments them with pairs using

traditional low-level jitter. Each real image is jittered following parameters in [25]

4Pretrained CNN features with RankSVM proved inferior.
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Figure 6.5: Sample images generated through traditional low-level jitter. Each image is seeded from a
real image in the training set and the modifications are attribute-independent.

in a combination of five changes: translation, scaling, rotation, contrast, and color

(Fig. 6.5). A jittered pair inherits the corresponding real pair’s label.

• SemJitter: Training pool consists of only half of Real’s pairs, with the other half

replaced with our dense synthetic image pairs, manually verified by annotators.

• SemJitter-Auto: Training pool consists of all real image pairs and our auto-

matically supervised synthetic image pairs, where noisy pairwise supervision is

obtained (for free) based on the absolute attribute strength used to generate the

respective images.

• Classifier: Predicts the attribute scores directly using the posterior RA(φ(x)) =

p(A|x) obtained from a binary classifier trained with the same images that train

the image generator.

• Real+: Augments Real with additional pseudo real image pairs. The image gen-

erator [118] requires attribute strength values on its training images, which are

obtained from outputs of an attribute classifier [63]. The Real+ baseline trains us-

ing the same real pairs used above, plus pseudo pairs of the equal size boostrapped

from those strength values on individual images.

We stress that our semantic jittering methods use the same amount of human-annotated

pairs as the Real and Jitter baselines.

6.2.2 Fashion Images of Shoes

Fashion product images offer a great testbed for fine-grained comparisons. This ex-

periment uses UT-Zap50K for real training and testing pairs, and Zap50K-Synth for
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Table 6.1: Results on Zap50K for the new lexicon of 10 attributes most frequently used to distinguish
fine-grained differences between shoe images. We experiment with two kinds of base training models:
(top) local learning (RankSVM) [125] and (bottom) localized ranking (DeepSTN) [107].

Comfort Casual Simple Sporty Color Durable Support Bold Sleek Open

Classifier 72.69 79.32 82.20 81.21 17.87 80.05 78.62 18.35 17.60 27.15

R
a
n
k
S
V
M

Real 84.03 86.11 86.89 87.27 83.84 85.15 87.75 83.71 86.06 84.41

Real+ 82.41 87.04 86.18 87.58 84.79 84.69 87.75 81.44 88.02 81.18

Jitter 84.49 87.35 88.52 83.36 85.36 86.77 86.86 85.36 86.31 82.53

SemJitter 85.02 88.89 85.56 89.95 87.43 84.32 87.29 87.62 86.40 81.05

SemJitter-Auto 84.72 87.35 87.59 86.06 85.74 86.78 83.74 85.36 86.55 83.87

D
e
e
p
S
T
N

Real 84.95 87.04 89.46 88.79 94.30 83.29 85.75 87.42 85.82 84.68

Real+ 81.25 87.65 86.18 87.88 90.68 83.29 85.52 87.84 86.31 82.53

Jitter 81.94 87.96 86.89 87.58 93.73 85.38 85.75 89.07 83.86 80.65

SemJitter 82.18 89.81 89.70 90.30 93.73 87.24 85.52 89.28 86.55 82.26

SemJitter-Auto 87.27 88.89 88.76 90.00 95.44 88.86 87.75 87.63 86.80 86.29

synthetic training pairs. There are 10 attributes total. Since the real train and test

pairs come from the same dataset, this presents a challenge for our approach—can syn-

thetic images, despite their inherent domain shift, still help the algorithm learn a more

reliable model?

Table 6.1 shows the results. The Classifier baseline underperforms both rankers,

confirming that the generator’s initial representation of attribute strengths is insufficient.

Under the local RankSVM model, our approach outperforms the baselines in most

attributes. Augmenting with traditional low-level jitter also provides a slight boost in

performance, but not as much as ours. Figure 6.5 shows examples of low-level jittered

images. Looking at the composition of the local neighbors, we see that about 85%

of the selected local neighbors are our synthetic pairs (15% real) while only 55% are

jittered pairs (45% real). Thus, our synthetic pairs do indeed heavily influence the

learning of the ranking models. Figure 6.4 shows examples of nearest neighbor image

pairs retrieved for sample test pairs. The examples illustrate how 1) the synthetic images

densify the supervision, providing perceptually closer instances for training, and 2) both

real and synthetic image pairs play an important role in training. We conclude that

semantic jitter densifies the space more effectively than low-level jitter. In Chapter 7,

I provide results to analyze more deeply how the space is densified and to what extent

the generated samples follow the distribution of the real images.

Under the DeepSTN model (Table 6.1), our approach outperforms the baselines

in all attributes. Interestingly, SemJitter-Auto often outperforms SemJitter here. We

believe the higher capacity of the DeepSTN model can better leverage the noisy auto-
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Table 6.2: Results on UT-Zap50K-1 (coarse pairs) and UT-Zap50K-2 (fine-grained pairs) vs. prior
methods. Refer to Section 3.1 for the definitions of the coarse and the fine-grained pairs. All methods
are trained and tested on 64× 64 images for an apples-to-apples comparison. All experimental setup
details are kept the same except for the addition of dense synthetic pairs to the training pool for our
approach.

Open Sporty Comfort

Z
a
p
5
0
K
-1 RelAttr [84] 88.33 89.33 91.33

FG-LP [125] 90.67 91.33 93.67

DeepSTN [107] 93.00 93.67 94.33

SemJitter-Auto (Ours) 95.00 96.33 95.00

Z
a
p
5
0
K
-2 RelAttr [84] 60.36 65.65 62.82

FG-LP [125] 69.36 66.39 63.84

DeepSTN [107] 70.73 67.49 66.09

SemJitter-Auto (Ours) 72.18 68.70 67.72

labeled pairs, compared to the RankSVM model, which more often benefits from the

human-verification step. As one would expect, we notice that SemJitter-Auto does best

for attributes where the inferred labels agree most often with human provided labels.

This is an exciting outcome; our model has potential to generate useful training data

with “free” supervision. Low-level jitter on the other hand has limited benefit, even

detrimental in some cases. Furthermore, the number of synthetic pairs used correlates

positively with performance, e.g., halving the number of synthetic pairs to SemJitter-

Auto decreases accuracy by 4 points on average.

For both ranking models, our approach outperforms the Real baseline. This

shows that simply collecting more annotations on real images is not enough: “Real”

uses twice as many real training pairs as our method, yet is consistently less accurate.

The finding holds even when we augment Real with [118]’s instance labels (Real+). Both

baselines suffer from the sparsity issue, lacking the fine-grained comparisons needed to

train a stronger model.

Overall, our gains are significant, considering they are achieved without any

changes to the underlying ranking models, the features, or the experimental setup.

Comparison to Prior Relative Attribute Results Next, we take the best model

from above (DeepSTN+SemJitter-Auto), and compare its results to several existing

methods. While authors have reported accuracies on this dataset, as-is comparisons to

our model would not be apples-to-apples: due to the limits of image synthesis at the
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Table 6.3: Results on PFSmile dataset. The Classifier baseline is independent of the data composition,
and therefore, takes up its own row.

Smiling Real Real+ Jitter SemJitter SemJitter-Auto

Classifier – – – – – – 62.35 – – – – – –

RankSVM 69.29 68.95 74.29 73.88 75.00

DeepSTN 81.52 80.84 80.09 85.78 84.36

time of our implementation, we work with low resolution data (64 × 64) whereas prior

attribute work uses full sized 150× 100 [107, 108, 117]. Therefore, we use the authors’

code to re-train existing methods from scratch with the same smaller real images we

use. In particular, we train 1) Relative attributes (RelAttr) [84]; 2) Fine-grained local

learning (FG-LP) [125]; and 3) End-to-end localization and ranking (DeepSTN). We

compare them on UT-Zap50K.5 To avoid an unfair advantage, we only use relevant real

image pairs from the original UT-Zap50K dataset (Sec. 3.1), as opposed to those from

our improved UT-Zap50K dataset (Sec. 3.2).

Tables 6.2 shows the results. Our approach does best, improving the state-of-the-

art DeepSTN even for the difficult fine-grained pairs on UT-Zap50K-2 where attention

to subtle details is necessary.

6.2.3 Human Faces

Next we consider the face domain. This experiment uses LFW-10 for real training pairs,

LFW-Synth for synthetic training pairs, and PFSmile for real testing pairs (see Sec. 3.3).

Since PFSmile only contains image pairs of the same individual, the comparison task is

fine-grained by design. Here we have an additional domain shift, as the real train and

test images are from different datasets with somewhat different properties.

Table 6.3 shows the results. Consistent with above, our approach outperforms all

baselines. Even without human verification of our synthetic pairs (SemJitter-Auto), our

method secures a decent gain over the Real baseline: 75.00% vs. 69.29% and 84.36% vs.

81.52%. That amounts to a relative gain of 8% and 3.5%, respectively. The Classifier

posterior baseline underperforms the rankers. Our semantic jitter strongly outperforms

traditional low-level jitter for the DeepSTN rankers, with a 6 point accuracy boost.

5We test all attributes that overlap between UT-Zap50K and Zap50K-Synth, namely “open”, “sporty”, and “comfort”.
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6.3 Discussion

In this chapter, I proposed a new data augmentation approach to overcome the sparsity

of supervision issue in fine-grained comparison learning. The proposed approach involves

the generation and the addition of synthetic image pairs into the existing pool of real

training image pairs. These synthetic pairs exhibit slight modifications of individual

attributes, thus densifying the image space to better illustrate fine-grained differences. A

key observation here is that sample density is distinct from sample quantity. Moreover,

as shown through evaluation over two attribute domains, the improvements achieved

through densifying supervision are independent of the prediction models used, further

extending the generalizability of the proposed approach.

However, while the results are positive, there are various aspects of the ap-

proach that could be improved. Firstly, there is no clear winner between SemJitter

and SemJitter-Auto, where each seems to perform better on certain attributes and not

the others. Identifying the cause of this difference could help us determine when to elicit

human annotators and when not to. Secondly, we are only modifying one single attribute

when sampling for intra-identity pairs, which is not always realistic as the attributes are

oftentimes correlated. Thirdly, we do not have a way to quantify the density of the

attribute space, to validate that we are indeed densifying the training space. Finally,

the current pipeline lacks a systematic way of sampling for the identities, or rather, for

the synthetic image pairs in general. As we will see in Chapter 7, the next step in our

data augmentation approach is to move away from a passive generation of images based

on heuristics to a more active generation of the synthetic image pairs directly.
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Chapter 7

Active Training Image Creation

Continuing with the issue of the sparsity of supervision in fine-grained comparisons, I

now explore a holistic approach to synthesizing novel image pairs optimized for training

ranking models. In the previous chapter, we first generate the synthetic images through

individual identities and then form the supervision pairs based on automated sampling

heuristics (Sec. 6.1.2). In this work, I propose to generate the image pairs directly in an

adversarial manner, through active image generation. Unlike traditional active learning

methods where informative instances—which are selected from a pool of manually cu-

rated unlabeled images—are prioritized for labeling, we design a system that directly

synthesizes image pairs that would confuse the current ranking model for labeling. We

refer to this approach as ATTIC, for AcTive Training Image Creation. The main idea

is to jointly learn the target visual task while also learning to generate novel realistic

image pairs that, once manually labeled, will benefit that task.

To this end, I propose an end-to-end framework for attribute-based image com-

parison, which serves as a continuation of our semantic jittering approach from Chap-

ter 6. The adversarial aspect of the model aims to avoid the “streetlight effect” of

traditional pool-based active learning. The “streetlight effect” refers to a type of obser-

vational bias where one searches for something only where it is the easiest to look, such

as looking for a lost key only around a streetlight where it is well-lit. In our case, this

is analogous to an active learning approach that only looks for new images to annotate

from a pre-defined pool of images. Therefore, rather than limit training to manually

curated real images, ATTIC synthesizes image pairs that will be difficult for the ranker

as it has been trained thus far. See Figure 7.1.

In this chapter, we first describe the key modules in our ATTIC network (Sec. 7.1),

followed by our training procedure and the active image creation active loop (Sec. 7.1.4).

We validate our results once again on the fine-grained shoes and faces datasets, with

multiple attributes for both datasets (Sec.7.2).

The work in this chapter also appears in arXiv [129].
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Current Ranker

Ideal Ranker

(open)

Real Image

Real Image (unlabeled)

Generated Image

Figure 7.1: Schematic overview of main idea. Real images (green ×’s) are used to train a deep ranking
function for the attribute (e.g., the openness attribute for shoes). The pool of real images consists of
those that are labeled (dark ×’s) and those that are unlabeled (faded ×’s). Even with all the real images
labeled, the ideal ranking function may be inadequately learned. Rather than select other manually
curated images for labeling (faded green ×’s), ATTIC directly generates useful synthetic training images
(red #’s) through an adversarial learning process. The three shoes along each path of circles represent
how ATTIC iteratively evolves the control parameters to obtain the final synthetic image pairs.

7.1 Approach

Let PA be an initial set of real training image pairs used to initialize the ranker.

Just like in the previous chapter, our goal is to improve that ranker by creating synthetic

training image pairs SA, to form a hybrid training set {PA

⋃

SA}.

Our proposed end-to-end ATTIC framework consists of three distinct compo-

nents (Fig. 7.2): the ranker module, the generator module, and the control module.

Our model performs end-to-end adversarial learning between the ranker and the control

modules. The ranker tries to produce accurate attribute comparisons, while the control

module tries to produce control parameters—latent image parameters—that will gener-

ate difficult image pairs to confuse the current ranker. By asking human annotators to

label those confusing pairs, the ranker is actively improved. Compared to my semantic

jitter approach from Chapter 6, our novelty in this work comes from the addition of the

control module, as well as the formation of an end-to-end adversarial network using all

three modules. We next discuss the individual modules.
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Figure 7.2: Architecture of our proposed end-to-end approach consisting of three primary modules.
The control module first converts the random input q into control parameters {(yA, zA), (yB , zB)}. Its
architecture is detailed further in Figure 7.3. The generator module then generates a pair of synthetic
images (x̂A, x̂B) using these control parameters. The ranker module finally uses the generated synthetic
images (once manually labeled) and the real training images to train the ranking model, outputting
their corresponding attribute strength (vA, vB). During training, the ranking loss using the RankNet
objective is fed back into the ranker (green dotted line), while the negative ranking loss from the same
objective is fed back into the control module (red dotted line). Note that the decoders within the
generator are pre-trained and their parameters are kept frozen throughout training.

7.1.1 Ranking Module

For the ranking module in ATTIC, we once again employ the state-of-the-art deep

DeepSTN with a spatial transformer network approach [107] detailed in Section 6.1.3.

As before, RankNet handles pairwise outputs in a single differentiable layer using cross-

entropy loss. The rank estimates (vi, vj) for images (xi,xj) are mapped to a pairwise

posterior probability using a logistic function

pij =
1

1 + e−(vi−vj)
, (7.1)

and the ranking loss is:

Lrank = − log(pij). (7.2)

The ranking loss here is a simplified form of Equation 4.3 where only ordered pairs Po

are used (i.e., tij = 1),

7.1.2 Generator Module

For the generator module, we adopt the same attribute-conditioned image gener-

ator, Attr2Image [118, 119], that was introduced in Section 6.1.1. Instead of generating

synthetic image pairs offline based on sampling from hallucinated identities, we connect
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Figure 7.3: Architecture of the control module. The model above outputs a single set of control
parameters (y, z). Since we generate the synthetic images in pairs, we duplicate the architecture.

the generator outputs directly to the inputs of the ranker module in a Siamese manner.

Synthetic image pairs are then generated and modified on-the-fly throughout training.

The attribute-conditioned aspect of this generator allows us to iteratively refine

the generated images in a semantically smooth manner, as we adversarially update its

inputs (y, z) with the control module defined next. We pre-train the generator using

{(xi,yi)}, a disjoint set of training images labeled by their Na attribute strength labels.

Subsequently, we take only the decoder part of the model and use it as our generator (see

Fig. 7.2). We freeze all parameters in the generator during active image creation, since

the mapping from latent parameters to pixels is independent of the rank and control

learning.

7.1.3 Control Module

As defined thus far, linking together the ranker and generator would aimlessly feed

new image sample pairs to the ranker. Next we define our control module and explain

how it learns to feed pairs of intelligently chosen latent parameters to the generator for

improving the ranker.

The control module is a neural network that precedes the generator (see Fig-

ure 7.2, left). Its input is a random seed q ∈ R
Q, sampled from a multivariate Gaussian.

Its output is a pair of control parameters {(yA, zA), (yB, zB)} for synthetic image gener-

ation. Figure 7.3 shows the control architecture. It is duplicated to create two branches

feeding to the generator and then the Siamese network in the DeepSTN ranker.

The attribute control variable y is formed by passing q through a few fully-
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connected layers, followed by a BatchNorm layer with scaling. In particular, for the

scaling we obtain the scaling parameters from the mean and the standard deviation

of the attribute strengths observed from the real training images, then apply them to

the normalized N (0, 1) outputs from the BatchNorm layer. The scaling ensures that the

attribute strengths are bounded within a range appropriate for the pre-trained generator.

The latent feature control variable z, which captures all the non-attribute prop-

erties (e.g., pose, illumination), is sampled from a Gaussian. We simply use half of

the entries from q for z
A and z

B , respectively. This Gaussian sample agrees with the

original image generator’s prior p(z) [118, 119].

7.1.4 Training and Active Image Creation

Given the three modules, we connect them in sequence to form our active learning

network. The generator and the ranker modules are duplicated for both branches to

account for two images in each training pair. The decoders in the generator module

are pre-trained and their parameters are kept frozen. During training, we optimize the

RankNet loss for the ranker module, while at the same time optimizing the negative

RankNet loss for the control module:

Lcontrol = −Lrank, (7.3)

creating the adversarial effect. The control module thus learns to produce parame-

ters that generate image pairs that are difficult for the ranker to predict. This instills

an adversarial effect where the control module and the ranker module are competing

against each other iteratively during training. The learning terminates when the ranker

converges or reaches a certain threshold of training iterations.

To generate a batch1 of synthetic image pairs SA = {x̂A, x̂B)}Ti=1, we sample T

vectors q and push them through the control and generator. Then the batch is labeled

by annotators, who judge which image shows the attribute more, and the resulting

pairs accepted by annotators as valid are added to the hybrid training set {PA

⋃

SA}.

Figure 7.4 shows examples of the progression of some synthetic image pairs during the

training iterations. As we can see, ATTIC captures the joint interaction between the

1We use “batch” here in the active learning sense: a batch of additional examples are manually labeled then used to
update the predictive model. This is not to be confused with (mini)-batches for training the neural networks.

72



Active Training Image Creation

S
le

e
k

S
u

p
p

o
rt

iv
e

S
m

il
in

g
M

a
sc

u
li

n
e

Initial Final

Figure 7.4: Visualization of the progression of some synthetic image pairs (x̂A, x̂B) during training.
Our model learns patterns between all the attributes, modifying multiple attributes simultaneously. For
example, while modifying the face images for the attribute masculine (last row), our model learned to
change the attribute smiling as well.

attributes and modifies each pair of images simultaneously in order to best confuse the

current ranking model.

The primary novelty of this approach comes from the generation of synthetic im-

age pairs through active query synthesis. From an active learning perspective, instead of

selecting more real image pairs to be labeled based on existing pool-based strategies, our

approach aims to directly generate the most beneficial synthetic image pairs (Fig. 7.1).

Furthermore, instead of sampling (yi, zi) using a heuristic when generating the synthetic

image pairs, as proposed in the previous chapter, ATTIC automates this selection in a

data-driven manner.
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7.2 Experiments

To validate our active generation approach, we once again explore the fine-grained

shoe and face domains.

7.2.1 Experimental Setup

Datasets: For each domain, our method uses real images to initialize training and then

creates its own synthetic training images. Note that the synthetic images are labeled by

human annotators (in most cases) before they are used to augment the training set.

• Catalog Shoe Images: We use the improved UT-Zappos50K dataset with the

fine-grained attributes from Section 3.2. There are 10 attributes (comfort, casual,

simple, sporty, colorful, durable, supportive, bold, sleek, and open), each with about

4,000 labeled pairs.

• Human Face Images: We use the LFW dataset and the LFW-10 dataset

from Section 3.3. We use the 8 attributes (bald, dark hair, big eyes, masculine,

mouth open, smiling, visible forehead, and young) in the intersection of these two

datasets. For the real image pairs, there are about 600 labeled pairs per attribute

from LFW-10.

All images for all methods are resized to 64×64 pixels to match the output resolution of

the image generator. We collect annotations for our method’s automatically generated

synthetic training pairs using mTurk, as we did with the real training pairs; we obtain

five worker responses per label and take the majority vote (see Sec. 3.2 and 3.3). Workers

are free to vote for discarding a pair if they find it illegible, which happened for just 17%

of the generated pairs.

Implementation Details: During training, we validate all hyperparameters (such as

the learning rate, the learning rate decay, and the weight decay) on a separate validation

set. We run all experiments (including individual batches) to convergence or to a max-

imum of 250 and 100 epochs for shoes and faces, respectively. We monitor the ranking

loss on the validation set throughout training to avoid overfitting.

For the individual modules, implementation details are as follows. Ranker: We

pre-train the DeepSTN ranking network without the global image channel using only
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the real image pairs (see [107] for details on the two rounds of training). Generator: We

use the code provided by the authors of Attr2Image [118] with all default parameters.

We pre-train the image generators using a disjoint set of real images (38,000 and 11,000

images for shoes and faces, respectively) that do not have any associated relative labels.

We use the trained decoder in ATTIC while keeping the parameters constant throughout

end-to-end training for the ranker and control (i.e., learning rate of zero on decoder).

Control: We initialize the layers using ReLU initialization [41]. The learning rate decays

such that as learning goes on, the changes to y, z become smaller.

Baselines: We consider the following baselines.

• Real: Standard approach which trains with only real labeled image pairs.

• Real+: Slight modification that adds real image pairs with their pseudo labels

to Real. The purpose of this baseline is to ensure that our advantage is not due

to our network’s access to the attribute-strength labeled images that the image

generator module requires for training.

• Jitter: The traditional data augmentation process where the real images are

jittered through low-level geometric and photometric transformations. We follow

the jitter protocol defined in [25], which includes translation, scaling, rotation,

contrast, and color. The jittered image pairs retain the corresponding real pairs’

respective labels.

• Semantic Jitter: Our dense supervision approach from Chapter 6. For the

synthetic shoe image pairs, we use the Zap50K-Synth dataset. For the synthetic

face image pairs, we collect relative labels on 1,000 pairs per attribute.

Overall, the above baselines are designed in the exact same way as they are in Sec-

tion 6.2.1. All methods use the same state-of-the-art ranking network for training and

predictions, hence any differences in results will be attributable to the training data

and augmentation strategy. Notice that we do not evaluate on the large-margin ranking

function (RankSVM), since it cannot be integrated into our end-to-end pipeline.
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Table 7.1: Accuracy for the 10 attributes in the Shoes dataset. Semantic Jitter is the approach proposed
in Chapter 6. “Normal” means that the synthetic images generated by Semantic Jitter and ATTIC are
labeled by human annotators. “Auto” means that an additional n unlabeled synthetic image pairs are
added for all methods except Real; those images adopt their inferred attribute labels. In all cases, all
methods use exactly n total labels. The row for the Real baseline is repeated for Normal and Auto for
easier comparison purposes.

Comfort Casual Simple Sporty Colorful Durable Supportive Bold Sleek Open

N
o
r
m

a
l

Real [107] 84.26 88.58 88.99 88.18 94.10 82.83 83.96 88.25 84.35 83.87

Real+ 81.71 87.96 87.12 87.58 91.05 82.60 84.41 87.63 85.82 83.87

Jitter 79.17 88.88 85.48 85.76 92.00 79.81 80.85 87.63 82.89 78.50

SemJitter 83.10 89.20 88.76 88.49 94.10 82.37 85.08 89.07 86.31 82.26

ATTIC 83.80 89.51 89.23 88.18 94.10 85.85 86.41 88.04 87.78 83.07

A
u
t
o

Real [107] 84.26 88.58 88.99 88.18 94.10 82.83 83.96 88.25 84.35 83.87

Real+ 81.71 87.96 87.12 87.58 91.05 82.60 84.41 87.63 85.82 83.87

Jitter 82.87 87.96 86.65 87.58 93.91 80.51 84.63 88.66 83.37 79.84

SemJitter 84.72 88.89 89.70 89.39 94.29 83.99 86.41 89.07 85.82 83.87

ATTIC 87.04 89.20 91.57 91.21 94.48 87.94 87.31 89.90 86.31 85.75

7.2.2 Pairwise Comparisons using ATTIC

First, we validate our hypothesis from the beginning of this chapter, that our

approach could overcome the “streetlight effect” of traditional pool-based active learning.

We compare the data augmentation baselines and ATTIC to the Real baselines, where

all methods are given the exact same amount of total manual annotations. The Real,

Real+, and Jitter baselines use all n available real labeled image pairs. Semantic Jitter

and ATTIC use half of the real labeled image pairs (n
2
), then augment those pairs with

n
2
manually labeled synthetic image pairs that they generate.

Tables 7.1 and 7.2 (Normal) show the results for the shoe and face datasets,

respectively. Though using exactly the same amount of manual labels as the Real base-

line, our method nearly always outperforms it. This shows that simply having more real

image pairs labeled is not always enough; our generated samples improve the training

across the variety of attributes in ways the existing real image pairs could not. In addi-

tion, we see from Real+ that the image generator training images have only a marginal

(and sometimes negative) effect on the baseline’s results. This indicates that both Real

and Real+ suffer from the same sparsity issue, as the images are taken from similar pool

of real images. The addition of similarly distributed (real) images lacks the fine-grained

details needed to train a stronger model. This is consistent with our observation from

Section 6.2. Furthermore, our approach also outperforms (or matches) Semantic Jitter

in 8 out of 10 shoe attributes and 6 out of 8 face attributes, with gains of just over

3% in some cases. This demonstrates our key advantage over Semantic Jitter, which is

76



Table 7.2: Accuracy for the 8 attributes in the Faces dataset. Format is the same as Table 7.1.

Bald DarkHair BigEyes Masculine MouthOpen Smiling Forehead Young
N
o
r
m

a
l

Real [107] 79.80 86.77 78.18 92.96 87.50 74.44 80.00 78.76

Real+ 81.82 86.03 80.00 92.96 86.67 75.94 81.21 79.28

Jitter 80.81 85.29 76.36 88.73 77.50 74.44 81.05 77.20

SemJitter 81.82 87.50 83.64 92.96 88.33 79.70 83.16 81.35

ATTIC 84.85 88.24 85.46 95.78 79.17 81.96 84.21 80.31

A
u
t
o

Real [107] 79.80 86.77 78.18 92.96 87.50 74.44 80.00 78.76

Real+ 81.82 86.03 80.00 92.96 86.67 75.94 81.21 79.28

Jitter 81.82 86.87 80.00 91.55 84.17 74.44 85.26 79.79

SemJitter 82.83 88.24 81.82 94.37 85.00 75.19 83.16 79.28

ATTIC 85.86 90.44 83.36 94.37 82.50 76.69 85.26 78.24

to actively adapt the generated images to best suit the learning of the model, as op-

posed to what looks the best to human eyes. Unlike Semantic Jitter, which modifies

one attribute at a time, our approach can modify multiple attributes simultaneously in

a dynamic manner, accounting for their dependencies.

In Tables 7.1 and 7.2 we also consider an “Auto” scenario where instead of adding

the n
2
generated images with their manual annotations, we bootstrap from all n real

labeled image pairs. Then, we generate another n synthetic images and—rather than

get them labeled—simply adopt their inferred attribute comparison labels (equivalent to

“SemJitter-Auto” from the previous chapter). In this case, the “ground truth” ordering

for attribute j for generated images x̂
A and x̂

B is automatically determined by the

magnitudes of their associated parameter values yA(j) and y
B(j) output by the control

module. As before, Jitter adopts the label of the source pair it jittered. Once again, all

methods use the same number of labels.

Table 7.1 and 7.2 (Auto) show the results. Our model performs even a bit better

in this setting, suggesting that the inferred labels are often accurate, and the extra

volume of “free” training pairs is helpful. We outperform (or match) Semantic Jitter

in all 10 shoe attributes and 6 out of 8 face attributes. Jitter gets a slight performance

boost sometimes, but can even be detrimental on these datasets.

While our method performs well overall, for a couple of attributes (i.e, mouth-

open, young) we underperform both Real and Semantic Jitter. Upon inspection, we find

our weaker performance there is due to deficiency in the image generators. While both

of our densifying approaches would suffer in such a scenario, ATTIC is more susceptible

to generator errors due to its adversarial nature.2

2Also, the minor variations between Table 6.1 and Table 7.1 are due to subtle implementation differences between
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Figure 7.5: Active learning curves for the shoe (left) and face (right) datasets. We show the average
gain over the Real baseline after each batch of additional generated image pairs. ATTIC nearly doubles
the gain achieved by Semantic Jitter for both domains.

7.2.3 Active vs. Passive Training Image Generation

Next we examine more closely ATTIC’s active learning behavior. In this scenario,

we suppose the methods have exhausted all available real training data (i.e., we use all

n real labeled image pairs to initialize the model), and our goal is to augment this set.

We generate the synthetic (labeled) image pairs in batches (again, not to be confused

with the mini-batches when training neural networks). After each batch, we have them

annotated, update the ranker’s training set, and re-evaluate it on the test set. The

weights of the control module are carried over from batch to batch, while the ranker

module restarts at its pre-trained state at the beginning of each batch.

Figure 7.5 shows the results for both datasets. We plot active learning curves to

show the accuracy improvements as a function of annotator effort—steeper curves are

better, as they mean the system gets more accurate with less manual labeling. We see

the average gains of our approach over the Real baseline increase most sharply compared

to the baselines. Our approach achieves a gain of over 3% and 8% for the two domains,

respectively, which is almost double that of our Semantic Jitter approach. Jitter falls

short once again, suggesting that traditional low-level jittering has limited impact in

these fine-grained ranking tasks.

the two. For example, we added a validation set in this work to validate for the increased number of hyperparameters in
our end-to-end model, whereas in Section 6.2 we simply used the existing hyperparameters from [107]. The inclusion of
a validation set also changes the distribution of the original train/test splits, resulting in more potential variations in the
final results. However, these minor variations do not affect the overall conclusion drawn in either work.
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Table 7.3: Extension to Table 6.2 in Chapter 6 that includes our results for the same UT-Zappos50K
splits. As before, all methods are trained and tested on 64× 64 images for an apples-to-apples compar-
ison.

Open Sporty Comfort

Z
a
p
5
0
K
-1

RelAttr [84] 88.33 89.33 91.33

FG-LP [125] 90.67 91.33 93.67

DeepSTN [107] 93.00 93.67 94.33

SemJitter [128] 95.00 96.33 95.00

ATTIC 95.67 96.00 95.67
Z
a
p
5
0
K
-2

RelAttr [84] 60.36 65.65 62.82

FG-LP [125] 69.36 66.39 63.84

DeepSTN [107] 70.73 67.49 66.09

SemJitter [128] 72.18 68.70 67.72

ATTIC 71.68 69.62 68.64

7.2.4 Comparison to Previously Published Results

The experiments thus far demonstrate that our approach allows more accurate

fine-grained predictions for the same amount of manual annotation effort, compared to

both traditional training procedures with real images as well as existing jitter approaches.

Next we present results for our approach alongside all available comparable reported

results on the UT-Zap50K dataset.

Table 7.3 shows the results reported in Table 6.2 alongside our latest results from

ATTIC using the same UT-Zappos50K train/test split. Following Section 6.2.2, for an

apples-to-apples comparison, all methods are applied to the same 64 × 64 images. Our

results use the method exactly as described above for the “Auto” scenario.

Our method outperforms all the existing methods for the majority of the at-

tributes. Semantic Jitter outperforms ATTIC for sporty in the first test set and open in

the second test set, indicating that those attributes were similarly well-served by that

method’s heuristic choice for generated images. However, our automated method overall

has the advantage.

7.2.5 Qualitative Analysis

As we have seen in the results above, the synthetic image pairs generated by our

approach outperform those selected by the heuristic and passive selection processes of

Semantic Jitter and Jitter in almost all scenarios. The advantage of our active generation
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Figure 7.6: Sample training image pairs generated by ATTIC. “Harder” real pairs that are incorrectly
predicted by the baseline model (left). Synthetic image pairs generated by our active approach (middle).
Synthetic image pairs that are rejected by the human annotators during the labeling process as illegible
(right).

approach is its ability to modify the generated image pairs in a way that is best for the

learning of the model.

Figure 7.4 shows examples of how the synthetic images look between the first and

the last epoch of the training. We can see that pairs generated by our approach demon-

strate change in multiple attributes while still keeping the target attribute of comparison

at the forefront. Furthermore, the final pairs selected for labeling also demonstrate sub-

tler visual differences than the initial pairs, suggesting that our model has indeed learned

to generate “harder” pairs.

Figure 7.6 compares the “harder” pairs generated by ATTIC to those from the

real image pairs. Overall we see that the actively generated synthetic pairs tend to have

fine-grained differences and/or offer visual diversity from the real training samples. The

righthand side of the figure shows examples of generated pairs rejected by annotators

as illegible, which occurs 17% of the time. The relative low rate of rejection is an

encouraging sign for making active query synthesis viable for image labeling tasks.
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Figure 7.7: Box plots representing the intra-pair image distances of the various types of images used in
our experiments. Each image is represented by its associated attribute values y. The distances of all
attributes from each dataset are combined for these computations.

7.2.6 Insights into Synthetic Images

Finally, having seen the performance benefits of using synthetic images for train-

ing ranking models, our last set of analysis aims to validate our original hypothesis from

Chapter 6: Did our synthetic images densify the supervision in the attribute space? For

our analysis, we represent each image using its associated attribute values y.

First, we analyze the intra-pair image distances of the four types of images used:

Real, Jitter, SemJitter, and ATTIC. A larger distance represents a greater difference

in the respective feature space. Our automated sampling heuristics from Section 6.1.2

work under the assumption that shorter distances are better for learning fine-grained

comparisons.

Figure 7.7 shows the box plot representation of these distances.3 Immediately, we

see a clear contrast between the two image domains with our ATTIC image pairs. While

the face images follow our hypothesis that pairs with lower distances are preferable, the

shoe images actually exhibit the opposite preference. Our ATTIC shoe distances are not

only larger than those from Real and SemJitter but also occupy a wider range, therefore,

resulting in more diverse pairs. This makes sense for shoe images where the difference

in the attributes are often highly correlated amongst one another, especially in relation

to the 40 meta-data labels. Therefore, when automatically adjusting for one attribute,

many of the attributes are most likely modified as well. Our ATTIC face distances on the

other hand exhibit very subtle differences, representative of the fine-grained differences

3We do not have y for Jitter baseline as they would be the same as their Real counterparts.
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we are trying to identify on faces (e.g., minor changes in the size of the mouth for

smiling). This stark difference between the generated image pairs in the two domains

highlights the strength of our ATTIC approach, as it was able to adapt to each set of

training data to generate the most beneficial set of images for the respective rankers.

This adaptability is something that is missing from our semantic jittering approach.

Next, we attempt to visualize the distribution of these individual training images

using 2D t-SNE [72] embeddings. Figure 7.8 shows the 2D t-SNE embedding space of

images from Real, SemJitter, and the active batches of ATTIC. For the shoe domain,

our ATTIC images are mostly positioned away from the existing real images, generating

into regions in the feature space that are unoccupied. For the face domain on the other

hand, our ATTIC images tend to be tightly clustered amongst one another, signaling

fine-grained difference between the images. In addition, the clustering of the face images

mostly happens around the center of the t-SNE map. This is likely due to the blurry

backgrounds of the generated face images causing unintended uniformity during t-SNE

optimization. Overall, these observations agree with the main outcomes in the box plots

above.

Furthermore, we also generate another set of t-SNE grid visualization in Fig-

ures 7.9 and 7.10, where we display the actual images in their rough locations in the

embedding space, while filling out the missing locations with its nearest neighbor in the

attribute space. We color-code the images to represent their individual types.

Finally, a key observation to note from both analysis above is the difference be-

tween the synthetic images generated by our semantic jittering approach and by our

ATTIC approach here. Even though both approaches use the exact same image gener-

ator (Attr2Image), Semantic Jitter densifies throughout the space, but sticks near the

distribution of real images, for both datasets. In contrast, ATTIC ventures into new

parts of the feature space for the shoe attributes, demonstrating its ability to adapt and

adjust the learning to each specific set of training data.

7.3 Discussion

In this chapter, I proposed an approach for actively generating training image pairs that

can benefit a fine-grained attribute ranker. ATTIC focuses attention on novel training

image pairs that rapidly improve generalization—even after all available real images and
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their labels are exhausted. It lets the system think “outside of the pool” in annotation

collection, imagining its own training samples and querying human annotators for their

labels. On two difficult datasets we showed that the approach offers real payoff in

accuracy for distinguishing subtle attribute differences, with consistent improvements

over existing data augmentation techniques that generate synthetic image pairs in a

passive manner.

However, the success of ATTIC comes at a cost of the complexity of the end-

to-end model. As with any adversarial system, finding the right balance between the

learning of the ranker and the control modules is non-trivial. If the ranker module dom-

inates, the generated pairs tend to converge to a single local minima, which represents

the most “optimal” training pair. If the control module dominates, we get a “fooling

network” effect where the generated images might be optimal for learning the ranker but

visually incomprehensible. The use of the scaling layer in the control module alleviates

this issue, but also limits the range of variability of the generated synthetic images in

the process.
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Figure 7.8: t-SNE visualization of various types of images, including Real, SemJitter, and ATTIC (active
batches) for the shoe domain (top) and face domain (bottom). Each batch of our ATTIC approach is
represented with a different color. See legend for their corresponding batch numbers. Best viewed on
PDF.
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Figure 7.9: Alternate t-SNE grid visualization where every point in an embedding is filled with its
nearest neighbor. We show here complementary visualizations to the main embedding from Figure 7.8,
for the attributes supportive and smiling (in Fig. 7.10 below). The image border colors represent the
type of images, with Real as blue, SemJitter as green, and ATTIC as red. Best viewed on PDF.
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Figure 7.10: Alternate t-SNE grid visualization for the face attribute smiling. Best viewed on PDF.

86



Chapter 8

Conclusion

My thesis explores the task of fine-grained visual comparisons and introduces major

improvements over two fronts. Whether it was by using algorithms that prioritized local

neighbors or by directly generating the necessary neighboring images, we saw that the

use of the “right” data was crucial to the learning of fine-grained ranking models.

On the algorithmic front, we first saw how concentrating on the most closely

related training instances is valuable for isolating the precise visual features responsible

for subtle distinctions. Our approach expanded the viability of local learning beyond

traditional classification tasks to include ranking [125] (Chap. 4). Even when using only

a small subset of data for training, our local model outperformed comparable global

models that used all available training data. However, the isolation of each novel pair

during test time also came with a higher computational cost. Next, we explored how

local statistical models can address the “just noticeable difference” problem in attributes,

successfully accounting for the non-uniformity of indistinguishable pairs in the feature

space [127] (Chap. 5). Our local approaches outperformed the state-of-the-art (at the

time of publication).

On the source data front, we approached the sparsity of supervision issue by

proposing two new approaches to data augmentation using realistic synthetic examples.

Specifically, we proposed a passive approach based on an automatic sampling heuris-

tics [128] (Chap. 6), followed by an active approach based on an end-to-end adversarial

network [129] (Chap. 7). We observed that sample density is distinct from sample quan-

tity, and that even in a deep learning model, the distribution of the training data can

be as important as its absolute quantity. For the active scenario, instead of having to

choose from existing images as in traditional active learning, we can now directly create

useful images as needed.

Finally, to accompany all the above research, we collected a brand new large-scale

shoe dataset, UT-Zap50K, that is specifically designed for fine-grained comparison tasks
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(Sec. 3.1 and 3.2). In the following sections, I discuss various extension ideas and future

work beyond my thesis that are worthy of consideration for further research.

8.1 Extension Ideas

Here are some extension ideas that could be build upon my proposed approaches

from this thesis.

• Improved Image Generator: Whether we form the synthetic image pairs ac-

tively or passively, the overall quality of the generated images are bounded by the

quality of the image generator. It would be interesting to see how well our end-to-

end model generalized to other generators, though the design of the control module

would have to be modified and fine-tuned to accommodate the new generator.

• JND with Generative Models: While we borrow the term JND from psy-

chophysics to motivate our research, the analogy is not 100% faithful. In particu-

lar, psychophysical experiments to elicit JND often permit systematically varying

a perceptual signal until a human detects a change, e.g., slowly changing a light

source until a perceptual change is registered. Unfortunately, it is infeasible to ob-

tain such gradual (and continuous) change using the limited real images we have

from existing datasets. However, such progressive spectrum is obtainable using

the our generative framework proposed in Chapter 6. The generative capability

would allow us to explore and learn the true JND in visual comparisons.

• Dense Supervision for Classification: In my research, I have shown the ben-

efits of providing dense supervision through the use of synthetic images for fine-

grained visual comparison. It would be interesting and a natural extension to use

the same synthetic images to test whether the same can be done for fine-grained

classification. A key challenge would be to determine a threshold for assigning

binary attribute labels to the synthetic images. i.e., at what attribute strength

does an image go from “smiling” to “not smiling”.

• Semantic Jitter in Image Space vs. Feature Space: Given the imperfect

nature of image generators, a gap still exists between the real and the synthetic

images. One potential area of exploration is to synthesize the feature layers directly

instead of the images. The hypothesis here is that realistic looking images might
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not always lead to the most useful features for learning a ranking model. This

approach would bypass the need for an accurate image generator, thus reducing

(or even closing) the gap.

8.2 Future Work

Here are some relevant future work that go beyond the scope of this thesis.

• Personalized Ranking: When working with fine-grained differences, some of the

pairwise decisions could come down to personal opinions, e.g., the comfort level

of a shoe. Currently, we take the majority vote when determining ground truth

supervision from mTurk workers. It would be beneficial to have the ability to

project personal bias on a pre-trained ranking model, without needing to re-train

the entire model from scratch using user-specific training data. Such a personalized

ranking model would especially be useful in consumer shopping applications where

the ranking should ideally be customized for each user.

• Local Deep Learning: Local learning and deep neural networks currently do

not go hand in hand. While local models aim to use only the few most relevant

data samples, deep neural networks want as much data as we can provide. I

explored both of these approaches in my thesis and while they might not be directly

compatible, there might be ways that deep neural networks could leverage the idea

of only training with the most relevant data for a given test instance as well.
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